diff options
author | Pierrick-Dartois <pierrickdartois@icloud.com> | 2025-05-22 18:51:58 +0200 |
---|---|---|
committer | Pierrick-Dartois <pierrickdartois@icloud.com> | 2025-05-22 18:51:58 +0200 |
commit | cb6080eaa4f326d9fce5f0a9157be46e91d55e09 (patch) | |
tree | 4d080ade8db9faa0da5268ab420dad2b02a4e248 /theta_lib/isogenies | |
parent | d40de259097c5e8d8fd35539560ca7c3d47523e7 (diff) | |
download | pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.tar.gz pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.tar.bz2 pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.zip |
Clean up PEGASIS submodule inclusion
Diffstat (limited to 'theta_lib/isogenies')
-rw-r--r-- | theta_lib/isogenies/Kani_clapoti.py | 258 | ||||
-rw-r--r-- | theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py | 567 | ||||
-rw-r--r-- | theta_lib/isogenies/gluing_isogeny_dim4.py | 200 | ||||
-rw-r--r-- | theta_lib/isogenies/isogeny_chain_dim4.py | 114 | ||||
-rw-r--r-- | theta_lib/isogenies/isogeny_dim4.py | 162 | ||||
-rw-r--r-- | theta_lib/isogenies/tree.py | 28 |
6 files changed, 0 insertions, 1329 deletions
diff --git a/theta_lib/isogenies/Kani_clapoti.py b/theta_lib/isogenies/Kani_clapoti.py deleted file mode 100644 index 66030e2..0000000 --- a/theta_lib/isogenies/Kani_clapoti.py +++ /dev/null @@ -1,258 +0,0 @@ -from sage.all import * -import itertools - -from ..basis_change.kani_base_change import clapoti_cob_splitting_matrix -from ..basis_change.base_change_dim4 import base_change_theta_dim4 -from ..theta_structures.Tuple_point import TuplePoint -from ..theta_structures.montgomery_theta import null_point_to_montgomery_coeff, theta_point_to_montgomery_point -from ..theta_structures.theta_helpers_dim4 import product_to_theta_points_dim4 -from ..utilities.supersingular import torsion_basis_to_Fp_rational_point -from .Kani_gluing_isogeny_chain_dim4 import KaniClapotiGluing -from .isogeny_chain_dim4 import IsogenyChainDim4 - -class KaniClapotiIsog(IsogenyChainDim4): - r"""Class representing the 4-dimensional isogeny obtained via Kani's lemma F: Eu^2*Ev^2 --> Ea^2*A - where Ea=[\mf{a}]*E is the result of the ideal class group action by \mf{a} when given relevant - constants and torsion point information. - - INPUT: - - Pu, Qu = phi_u(P, Q)\in Eu; - - Pv, Qv = phi_v*phi_{ck}*\hat{\phi}_{bk}(P, Q)\in Ev; - - gu, xu, yu, gv, xv, yv, Nbk, Nck, e: positive integers; - where: - * gu(xu^2+yu^2)Nbk+gv(xv^2+yv^2)Nck=2^e; - * gcd(u*Nbk,v*Nck)=1 with u:=gu(xu^2+yu^2) and v:=gv(xv^2+yv^2); - * xu and xv are odd and yu and yv are even; - * \mf{b}=\mf{be}*\mf{bk} is a product of ideals of norms Nbe and Nbk respectively, - where Nbe is a product of small Elkies primes; - * \mf{c}=\mf{ce}*\mf{ck} is a product of ideals of norms Nce and Nck respectively, - where Nbe is a product of small Elkies primes; - * phi_{bk}: E --> E1 and phi_{ck}: E --> E2 are induced by the action of - ideals \mf{bk} and \mf{ck} respectively; - * <P,Q>=E_1[2^{e+2}]; - * phi_u: E1 --> Eu and phi_v: E2 --> Ev are gu and gv-isogenies respectively. - - OUTPUT: F: Eu^2*Ev^2 --> Ea^2*A is the isogeny: - - F := [[Phi_{bp}*\tilde{Phi}_u, Phi_{cp}*\tilde{Phi}_v], - [-Psi, \tilde{Phi}]] - - obtained from the Kani isogeny diamond: - - A --------------------Phi------------------> Ev^2 - ^ ^ - | | - | Phi_v - | | - Psi E2^2 - | ^ - | | - | \tilde{Phi}_{ck} - | | - Eu^2 --\tilde{Phi}_{u}--> E1^2 --Phi_{bk}--> Ea^2 - - where Phi_{bk}:=Diag(phi_{bk},phi_{bk}), Phi_{ck}:=Diag(phi_{ck},phi_{ck}), - - Phi_u := [[xu, -yu], - [yu, xu]] * Diag(phi_u,phi_u) - - Phi_v := [[xv, -yv], - [yv, xv]] * Diag(phi_v,phi_v) - """ - - def __init__(self,points,integers,strategy=None): - gu,xu,yu,gv,xv,yv,Nbk,Nck,e = integers - Pu,Qu,Pv,Qv = points - if gu*(xu**2+yu**2)*Nbk+gv*(xv**2+yv**2)*Nck!=2**e: - raise ValueError("Wrong parameters: gu(xu^2+yu^2)Nbk + gv(xv^2+yv^2)Nck != 2^e") - if gcd(ZZ(gu*(xu**2+yu**2)*Nbk),ZZ(gv*(xv**2+yv**2)*Nck))!=1: - raise ValueError("Non coprime parameters: gcd(gu(xu^2+yu^2)Nbk, gv(xv^2+yv^2)Nck) != 1") - if xu%2==0: - xu,yu=yu,xu - if xv%2==0: - xv,yv=yv,xv - - self.Eu = Pu.curve() - self.Ev = Pv.curve() - Fp2 = parent(Pu[0]) - Fp = Fp2.base_ring() - - # Number of dimension 2 steps before dimension 4 gluing Am^2-->B - m=valuation(xv*yu-xu*yv,2) - integers=[gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m] - - points_mp3=[(2**(e-m-1))*P for P in points] - points_mp2=[2*P for P in points_mp3] - points_4=[(2**m)*P for P in points_mp2] - - self.Ru_Fp = torsion_basis_to_Fp_rational_point(self.Eu,points_4[0],points_4[1],4) - - self.gluing_isogeny_chain = KaniClapotiGluing(points_mp3,points_mp2,points_4,integers, coerce=Fp) - - xuNbk = xu*Nbk - yuNbk = yu*Nbk - two_ep2 = 2**(e+2) - inv_Nbk = inverse_mod(Nbk,two_ep2) - u = gu*(xu**2+yu**2) - inv_u = inverse_mod(u,4) - lambxu = ((1-2**e*inv_u*inv_Nbk)*xu)%two_ep2 - lambyu = ((1-2**e*inv_u*inv_Nbk)*yu)%two_ep2 - xv_Nbk = (xv*inv_Nbk)%two_ep2 - yv_Nbk = (yv*inv_Nbk)%two_ep2 - - - B_Kpp = [TuplePoint(xuNbk*Pu,yuNbk*Pu,xv*Pv,yv*Pv), - TuplePoint(-yuNbk*Pu,xuNbk*Pu,-yv*Pv,xv*Pv), - TuplePoint(lambxu*Qu,lambyu*Qu,xv_Nbk*Qv,yv_Nbk*Qv), - TuplePoint(-lambyu*Qu,lambxu*Qu,-yv_Nbk*Qv,xv_Nbk*Qv)] - - IsogenyChainDim4.__init__(self, B_Kpp, self.gluing_isogeny_chain, e, m, splitting=True, strategy=strategy) - - # Splitting - M_split = clapoti_cob_splitting_matrix(integers) - - self.N_split = base_change_theta_dim4(M_split,self.gluing_isogeny_chain.e4) - - self.codomain_product = self._isogenies[-1]._codomain.base_change_struct(self.N_split) - - # Extracting the group action image Ea=[\mathfrak{a}]*E from the codomain Ea^2*E'^2 - self.theta_null_Ea, self.theta_null_Ep, self.Ea, self.Ep = self.extract_montgomery_curve() - - - - def extract_montgomery_curve(self): - - # Computing the theta null point of Ea - null_point=self.codomain_product.zero() - Fp2=parent(null_point[0]) - Fp = Fp2.base_ring() - for i3, i4 in itertools.product([0,1],repeat=2): - if null_point[4*i3+8*i4]!=0: - i30=i3 - i40=i4 - theta_Ea_0=Fp(null_point[4*i3+8*i4]) - theta_Ea_1=Fp(null_point[1+4*i3+8*i4]) - break - for i1, i2 in itertools.product([0,1],repeat=2): - if null_point[i1+2*i2]!=0: - i10=i1 - i20=i2 - theta_Ep_0=Fp(null_point[i1+2*i2]) - theta_Ep_1=Fp(null_point[i1+2*i2+4]) - break - - # Sanity check: is the codomain of F a product of the form Ea^2*E'^2 ? - theta_Ea=[Fp(theta_Ea_0),Fp(theta_Ea_1)] - theta_Ep=[Fp(theta_Ep_0),Fp(theta_Ep_1)] - - theta_Ea2Ep2=[0 for i in range(16)] - for i1,i2,i3,i4 in itertools.product([0,1],repeat=4): - theta_Ea2Ep2[i1+2*i2+4*i3+8*i4]=theta_Ea[i1]*theta_Ea[i2]*theta_Ep[i3]*theta_Ep[i4] - theta_Ea2Ep2=self.codomain_product(theta_Ea2Ep2) - - assert theta_Ea2Ep2.is_zero() - - A_Ep = null_point_to_montgomery_coeff(theta_Ep_0,theta_Ep_1) - Ep = EllipticCurve([0,A_Ep,0,1,0]) - - ## ## Recovering Ea over Fp and not Fp2 - ## self.find_Fp_rational_theta_struct_Ea() - - ## theta_Ea = self.iso_Ea(theta_Ea) - ## A_Ea = null_point_to_montgomery_coeff(theta_Ea[0],theta_Ea[1]) - - ## # Sanity check : the curve Ea should be defined over Fp - ## # assert A_Ea[1] == 0 - - ## # Twisting Ea if necessary: if A_Ea+2 is not a square in Fp, then we take the twist (A_Ea --> -A_Ea) - ## p=self.Eu.base_field().characteristic() - ## self.twist = False - ## if (A_Ea+2)**((p-1)//2)==-1: - ## A_Ea = -A_Ea - ## self.twist = True - - ## Ea = EllipticCurve([0,A_Ea,0,1,0]) - - A = null_point_to_montgomery_coeff(theta_Ea_0, theta_Ea_1) - Ab = null_point_to_montgomery_coeff(theta_Ea_0+theta_Ea_1, theta_Ea_0-theta_Ea_1) - Acan = min([A, -A, Ab, -Ab]) - Acan = A - if (Acan == A or Acan == -A): - # 'Id' corresponds to the point on the twist - self.iso_type = 'Id' - else: - # 'Hadamard' corresponds to the point on the curve - self.iso_type = 'Hadamard' - if ((self.iso_type == 'Hadamard' and not (Acan+2).is_square()) or (self.iso_type == 'Id' and (Acan+2).is_square())): - Acan=-Acan - if (Acan == A or Acan == Ab): - self.twist = False - else: - self.twist = True - Ea = EllipticCurve([0,Acan,0,1,0]) - - # Find the dual null point - return theta_Ea, theta_Ep, Ea, Ep - - def eval_rational_point_4_torsion(self): - T = TuplePoint(self.Ru_Fp,self.Eu(0),self.Ev(0),self.Ev(0)) - - FPu_4 = self.evaluate_isogeny(T) - FPu_4=self.codomain_product.base_change_coords(self.N_split,FPu_4) - FPu_4=product_to_theta_points_dim4(FPu_4) - - return FPu_4[0] - - def find_Fp_rational_theta_struct_Ea(self): - Pa = self.eval_rational_point_4_torsion() - - HPa = (Pa[0]+Pa[1],Pa[0]-Pa[1]) - i = self.Eu.base_field().gen() - self.i = i - iHPa = (Pa[0]+i*Pa[1],Pa[0]-i*Pa[1]) - - if Pa[0]==0 or Pa[1]==0: - self.iso_type='Id' - elif HPa[0]==0 or HPa[1]==0: - self.iso_type='Hadamard' - elif iHPa[0]==0 or iHPa[1]==0: - self.iso_type='iHadamard' - else: - raise ValueError("A rational theta point should be mapped to (0:1) or (1:0) after change of theta coordinates on Ea.") - - def iso_Ea(self,P): - # Change of theta coordinates to obtain Fp-rational theta coordinates on Ea - - if self.iso_type == 'Id': - return P - elif self.iso_type == 'Hadamard': - return (P[0]+P[1],P[0]-P[1]) - else: - return (P[0]+self.i*P[1],P[0]-self.i*P[1]) - - - def evaluate(self,P): - FP=self.evaluate_isogeny(P) - FP=self.codomain_product.base_change_coords(self.N_split,FP) - - FP=product_to_theta_points_dim4(FP) - FP=TuplePoint([theta_point_to_montgomery_point(self.Ea,self.theta_null_Ea,self.iso_Ea(FP[0]),self.twist), - theta_point_to_montgomery_point(self.Ea,self.theta_null_Ea,self.iso_Ea(FP[1]),self.twist), - theta_point_to_montgomery_point(self.Ep,self.theta_null_Ep,FP[2]), - theta_point_to_montgomery_point(self.Ep,self.theta_null_Ep,FP[3])]) - - return FP - - def __call__(self,P): - return self.evaluate(P) - - - - - - - - - - - diff --git a/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py b/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py deleted file mode 100644 index 282219c..0000000 --- a/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py +++ /dev/null @@ -1,567 +0,0 @@ -from sage.all import * -from ..utilities.discrete_log import weil_pairing_pari -from ..basis_change.canonical_basis_dim1 import make_canonical -from ..basis_change.kani_base_change import ( - fixed_deg_gluing_matrix_Phi1, - fixed_deg_gluing_matrix_Phi2, - fixed_deg_gluing_matrix_dim4, - clapoti_cob_matrix_dim2, - clapoti_cob_matrix_dim2_dim4, - gluing_base_change_matrix_dim2, - gluing_base_change_matrix_dim2_dim4, - gluing_base_change_matrix_dim2_F1, - gluing_base_change_matrix_dim2_F2, - kernel_basis, -) -from ..basis_change.base_change_dim2 import base_change_theta_dim2 -from ..basis_change.base_change_dim4 import base_change_theta_dim4 -from ..theta_structures.Theta_dim1 import ThetaStructureDim1 -from ..theta_structures.Theta_dim2 import ProductThetaStructureDim2 -from ..theta_structures.Tuple_point import TuplePoint -from ..theta_structures.Theta_dim4 import ProductThetaStructureDim2To4, ThetaPointDim4 -from ..isogenies_dim2.isogeny_chain_dim2 import IsogenyChainDim2 -from .gluing_isogeny_dim4 import GluingIsogenyDim4 - -class KaniFixedDegDim2Gluing: - def __init__(self,P_mp3,Q_mp3,a,b,c,d,u,f,m,strategy_dim2=None): - r""" - INPUT: - - P_mp3, Q_mp3: basis of E[2^(m+3)] such that pi(P_mp3)=P_mp3 and pi(Q_mp3)=-Q_mp3. - - a,b,c,d,u,f: integers such that a**2+c**2+p*(b**2+d**2)=u*(2**f-u), where p is - ths characteristic of the base field. - - m: integer such that m=min(v_2(a-b),v_2(a+b)). - - OUTPUT: Gluing isogeny chain F_{m+1}\circ...\circ F_1 containing the first m+1 steps of - the isogeny F: E^4 --> A*A' representing a u-isogeny in dimension 2. - """ - - P_mp2 = 2*P_mp3 - Q_mp2 = 2*Q_mp3 - P_4 = 2**m*P_mp2 - Q_4 = 2**m*Q_mp2 - - E = P_mp3.curve() - - # Canonical basis with S_4=(1,0) - _, _, R_4, S_4, M_dim1 = make_canonical(P_4,Q_4,4,preserve_pairing=True) - - Z4 = Integers(4) - M0 = matrix(Z4,[[M_dim1[0,0],0,M_dim1[0,1],0], - [0,M_dim1[0,0],0,M_dim1[0,1]], - [M_dim1[1,0],0,M_dim1[1,1],0], - [0,M_dim1[1,0],0,M_dim1[1,1]]]) - - # Theta structures - Theta_E = ThetaStructureDim1(E,R_4,S_4) - Theta_EE = ProductThetaStructureDim2(Theta_E,Theta_E) - - # Gluing change of basis in dimension 2 - M1 = fixed_deg_gluing_matrix_Phi1(u,a,b,c,d) - M2 = fixed_deg_gluing_matrix_Phi2(u,a,b,c,d) - - M10 = M0*M1 - M20 = M0*M2 - - Fp2 = E.base_field() - e4 = Fp2(weil_pairing_pari(R_4,S_4,4)) - - N_Phi1 = base_change_theta_dim2(M10,e4) - N_Phi2 = base_change_theta_dim2(M20,e4) - - # Gluing change of basis dimension 2 * dimension 2 --> dimension 4 - M_dim4 = fixed_deg_gluing_matrix_dim4(u,a,b,c,d,m) - - self.N_dim4 = base_change_theta_dim4(M_dim4,e4) - - # Kernel of Phi1 : E^2 --> A_m1 and Phi2 : E^2 --> A_m2 - two_mp2 = 2**(m+2) - two_mp3 = 2*two_mp2 - mu = inverse_mod(u,two_mp3) - - B_K_Phi1 = [TuplePoint((u%two_mp2)*P_mp2,((c+d)%two_mp2)*P_mp2), - TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,((c-d)%two_mp2)*Q_mp2)] - - B_K_Phi2 = [TuplePoint((u%two_mp2)*P_mp2,((d-c)%two_mp2)*P_mp2), - TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,(-(c+d)%two_mp2)*Q_mp2)] - - # Computation of the 2**m-isogenies Phi1 and Phi2 - self._Phi1=IsogenyChainDim2(B_K_Phi1,Theta_EE,N_Phi1,m,strategy_dim2) - self._Phi2=IsogenyChainDim2(B_K_Phi2,Theta_EE,N_Phi2,m,strategy_dim2) - - # Kernel of the (m+1)-th isogeny in dimension 4 F_{m+1}: A_m1*A_m2 --> B (gluing isogeny) - - B_K_dim4 =[TuplePoint((u%two_mp3)*P_mp3,E(0),((a+b)%two_mp3)*P_mp3,((c+d)%two_mp3)*P_mp3), - TuplePoint(E(0),(u%two_mp3)*P_mp3,((d-c)%two_mp3)*P_mp3,((a-b)%two_mp3)*P_mp3), - TuplePoint(((u-2**f)%two_mp3)*Q_mp3,E(0),((a-b)%two_mp3)*Q_mp3,((c-d)%two_mp3)*Q_mp3), - TuplePoint(E(0),((u-2**f)%two_mp3)*Q_mp3,((-c-d)%two_mp3)*Q_mp3,((a+b)%two_mp3)*Q_mp3)] - - L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] - - L_K_dim4=[[self._Phi1(TuplePoint(T[0],T[3])),self._Phi2(TuplePoint(T[1],T[2]))] for T in L_K_dim4] - - # Product Theta structure on A_m1*A_m2 - self.domain_product=ProductThetaStructureDim2To4(self._Phi1._codomain,self._Phi2._codomain) - - # Theta structure on A_m1*A_m2 after change of theta coordinates - self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) - - # Converting the kernel to the Theta structure domain_base_change - L_K_dim4=[self.domain_product.product_theta_point(T[0],T[1]) for T in L_K_dim4] - L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,T) for T in L_K_dim4] - - # Computing the gluing isogeny in dimension 4 - self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)]) - - # Translates for the evaluation of the gluing isogeny in dimension 4 - self.L_trans=[2*B_K_dim4[k] for k in range(2)] - self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) - - self._codomain=self._gluing_isogeny_dim4._codomain - - def evaluate(self,P): - if not isinstance(P, TuplePoint): - raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E^4") - - # Translating P - L_P_trans=[P+T for T in self.L_trans] - - # dim4 --> dim2 x dim2 - eval_P=[TuplePoint(P[0],P[3]),TuplePoint(P[1],P[2])] - eval_L_P_trans=[[TuplePoint(Q[0],Q[3]),TuplePoint(Q[1],Q[2])] for Q in L_P_trans] - - # evaluating through the dimension 2 isogenies - eval_P=[self._Phi1(eval_P[0]),self._Phi2(eval_P[1])] - eval_L_P_trans=[[self._Phi1(Q[0]),self._Phi2(Q[1])] for Q in eval_L_P_trans] - - # Product Theta structure and base change - eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) - eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) - - eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] - eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] - - return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) - - def __call__(self,P): - return self.evaluate(P) - - -class KaniClapotiGluing: - def __init__(self,points_mp3,points_mp2,points_4,integers,strategy_dim2=None,coerce=None): - self._coerce=coerce - Pu_mp3,Qu_mp3,Pv_mp3,Qv_mp3 = points_mp3 - Pu_mp2,Qu_mp2,Pv_mp2,Qv_mp2 = points_mp2 - Pu_4,Qu_4,Pv_4,Qv_4 = points_4 - gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers - - Eu=Pu_4.curve() - Ev=Pv_4.curve() - - lamb_u = inverse_mod(ZZ(gu),4) - lamb_v = inverse_mod(ZZ(gv*Nbk*Nck),4) - - - # 4-torsion canonical change of basis in Eu and Ev (Su=(1,0), Sv=(1,0)) - _,_,Ru,Su,Mu=make_canonical(Pu_4,lamb_u*Qu_4,4,preserve_pairing=True) - _,_,Rv,Sv,Mv=make_canonical(Pv_4,lamb_v*Qv_4,4,preserve_pairing=True) - - Z4 = Integers(4) - M0=matrix(Z4,[[Mu[0,0],0,Mu[1,0],0], - [0,Mv[0,0],0,Mv[1,0]], - [Mu[0,1],0,Mu[1,1],0], - [0,Mv[0,1],0,Mv[1,1]]]) - - self.M_product_dim2=M0 - - # Theta structures in dimension 1 and 2 - Theta_u=ThetaStructureDim1(Eu,Ru,Su) - Theta_v=ThetaStructureDim1(Ev,Rv,Sv) - - Theta_uv=ProductThetaStructureDim2(Theta_u,Theta_v) - - # Gluing change of basis in dimension 2 - M1 = clapoti_cob_matrix_dim2(integers) - M10 = M0*M1 - - Fp2 = Eu.base_field() - e4 = Fp2(weil_pairing_pari(Ru,Su,4)) - self.e4 = e4 - - N_dim2 = base_change_theta_dim2(M10,e4) - - # Gluing change of basis dimension 2 * dimension 2 --> dimension 4 - M2 = clapoti_cob_matrix_dim2_dim4(integers) - - self.N_dim4 = base_change_theta_dim4(M2,e4) - - # Kernel of the 2**m-isogeny chain in dimension 2 - two_mp2=2**(m+2) - two_mp3=2*two_mp2 - u=ZZ(gu*(xu**2+yu**2)) - mu=inverse_mod(u,two_mp2) - suv=ZZ(xu*xv+yu*yv) - duv=ZZ(xv*yu-xu*yv) - uNbk=(u*Nbk)%two_mp2 - gusuv=(gu*suv)%two_mp2 - xK2=(uNbk+gu*gv*mu*Nck*duv**2)%two_mp2 - B_K_dim2 = [TuplePoint(uNbk*Pu_mp2,gusuv*Pv_mp2),TuplePoint(xK2*Qu_mp2,gusuv*Qv_mp2)] - - # Computation of the 2**m-isogeny chain in dimension 2 - self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta_uv,N_dim2,m,strategy_dim2) - - # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny) - xuNbk = (xu*Nbk)%two_mp3 - yuNbk = (yu*Nbk)%two_mp3 - inv_Nbk = inverse_mod(Nbk,two_mp3) - lambxu = ((1-2**e)*xu)%two_mp3 # extreme case m=e-2, 2^e = 2^(m+2) so 2^e/(u*Nbk) = 2^e mod 2^(m+3). - lambyu = ((1-2**e)*yu)%two_mp3 - xv_Nbk = (xv*inv_Nbk)%two_mp3 - yv_Nbk = (yv*inv_Nbk)%two_mp3 - - B_K_dim4 = [TuplePoint(xuNbk*Pu_mp3,yuNbk*Pu_mp3,xv*Pv_mp3,yv*Pv_mp3), - TuplePoint(-yuNbk*Pu_mp3,xuNbk*Pu_mp3,-yv*Pv_mp3,xv*Pv_mp3), - TuplePoint(lambxu*Qu_mp3,lambyu*Qu_mp3,xv_Nbk*Qv_mp3,yv_Nbk*Qv_mp3), - TuplePoint(-lambyu*Qu_mp3,lambxu*Qu_mp3,-yv_Nbk*Qv_mp3,xv_Nbk*Qv_mp3)] - - L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] - - L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)] - - # Product Theta structure on A_m^2 - self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain) - - # Theta structure on A_m^2 after change of theta coordinates - self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) - - # Converting the kernel to the Theta structure domain_base_change - L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)] - L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)] - - # Computing the gluing isogeny in dimension 4 - self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)], coerce=self._coerce) - - # Translates for the evaluation of the gluing isogeny in dimension 4 - self.L_trans=[2*B_K_dim4[k] for k in range(2)] - self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) - - self._codomain=self._gluing_isogeny_dim4._codomain - - def evaluate(self,P): - if not isinstance(P, TuplePoint): - raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product Eu^2 x Ev^2") - - # Translating P - L_P_trans=[P+T for T in self.L_trans] - - # dim4 --> dim2 x dim2 - eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])] - eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans] - - # evaluating through the dimension 2 isogenies - eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])] - eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans] - - # Product Theta structure and base change - eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) - eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) - - eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] - eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] - - return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) - - def __call__(self,P): - return self.evaluate(P) - - - -class KaniGluingIsogenyChainDim4: - def __init__(self,points_m,points_4,a1,a2,q,m,strategy_dim2=None): - r""" - - INPUT: - - points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3) - such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is - its image by sigma: E1 --> E2. - - points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by - multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1). - - a1, a2, q: integers such that a1**2+a2**2+q=2**e. - - m: 2-adic valuation of a2. - - OUTPUT: Composition of the m+1 first isogenies in the isogeny chained - E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma. - """ - - P1_m, Q1_m, R2_m, S2_m = points_m - P1_4, Q1_4, R2_4, S2_4 = points_4 - - E1=P1_m.curve() - E2=R2_m.curve() - - Fp2=E1.base_field() - - lamb=inverse_mod(q,4) - - _,_,T1,T2,MT=make_canonical(P1_4,Q1_4,4,preserve_pairing=True) - _,_,U1,U2,MU=make_canonical(R2_4,lamb*S2_4,4,preserve_pairing=True) - - Z4=Integers(4) - M0=matrix(Z4,[[MT[0,0],0,MT[1,0],0], - [0,MU[0,0],0,MU[1,0]], - [MT[0,1],0,MT[1,1],0], - [0,MU[0,1],0,MU[1,1]]]) - - self.M_product_dim2=M0 - - # Theta structures in dimension 1 and 2 - Theta1=ThetaStructureDim1(E1,T1,T2) - Theta2=ThetaStructureDim1(E2,U1,U2) - - Theta12=ProductThetaStructureDim2(Theta1,Theta2) - - self.Theta1=Theta1 - self.Theta2=Theta2 - self.Theta12=Theta12 - - # Gluing base change in dimension 2 - M1=gluing_base_change_matrix_dim2(a1,a2,q) - M10=M0*M1 - - self.M_gluing_dim2=M1 - - e4=Fp2(weil_pairing_pari(T1,T2,4)) - - self.e4=e4 - - N_dim2=base_change_theta_dim2(M10,e4) - #N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1) - - # Gluing base change in dimension 4 - mua2=-M1[3,1] - M2=gluing_base_change_matrix_dim2_dim4(a1,a2,m,mua2) - - self.M_gluing_dim4=M2 - - self.N_dim4=base_change_theta_dim4(M2,e4) - - # Kernel of the 2**m-isogeny chain in dimension 2 - a1_red=a1%(2**(m+2)) - a2_red=a2%(2**(m+2)) - B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)] - - # Computation of the 2**m-isogeny chain in dimension 2 - self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2) - - # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny) - a1_red=a1%(2**(m+3)) - a2_red=a2%(2**(m+3)) - - a1P1_m=(a1_red)*P1_m - a2P1_m=(a2_red)*P1_m - a1Q1_m=(a1_red)*Q1_m - a2Q1_m=(a2_red)*Q1_m - - OE2=E2(0) - - B_K_dim4=[TuplePoint(a1P1_m,a2P1_m,R2_m,OE2),TuplePoint(a1Q1_m,a2Q1_m,S2_m,OE2), - TuplePoint(-a2P1_m,a1P1_m,OE2,R2_m),TuplePoint(-a2Q1_m,a1Q1_m,OE2,S2_m)] - L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] - - L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)] - - # Product Theta structure on A_m^2 - self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain) - - # Theta structure on A_m^2 after base change - self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) - - # Converting the kernel to the Theta structure domain_base_change - L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)] - L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)] - - # Computing the gluing isogeny in dimension 4 - self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)]) - - # Translates for the evaluation of the gluing isogeny in dimension 4 - self.L_trans=[2*B_K_dim4[k] for k in range(2)] - self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) - - self._codomain=self._gluing_isogeny_dim4._codomain - - def evaluate(self,P): - if not isinstance(P, TuplePoint): - raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2") - - # Translating P - L_P_trans=[P+T for T in self.L_trans] - - # dim4 --> dim2 x dim2 - eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])] - eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans] - - # evaluating through the dimension 2 isogenies - eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])] - eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans] - - # Product Theta structure and base change - eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) - eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) - - eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] - eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] - - return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) - - def __call__(self,P): - return self.evaluate(P) - -class KaniGluingIsogenyChainDim4Half: - def __init__(self, points_m, a1, a2, q, m, Theta12, M_product_dim2, M_start_dim4, M_gluing_dim4, e4, dual=False,strategy_dim2=None):#points_m,points_4,a1,a2,q,m,precomputed_data=None,dual=False,strategy_dim2=None): - r""" - - INPUT: - - points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3) - such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is - its image by sigma: E1 --> E2. - - points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by - multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1). - - a1, a2, q: integers such that a1**2+a2**2+q=2**e. - - m: 2-adic valuation of a2. - - OUTPUT: Composition of the m+1 first isogenies in the isogeny chained - E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma. - """ - - P1_m, Q1_m, R2_m, S2_m = points_m - - E1=P1_m.curve() - E2=R2_m.curve() - - Fp2=E1.base_field() - - self.M_product_dim2 = M_product_dim2 - - self.Theta12=Theta12 - - self.e4=e4 - - # Gluing base change in dimension 2 - if not dual: - M1=gluing_base_change_matrix_dim2_F1(a1,a2,q) - else: - M1=gluing_base_change_matrix_dim2_F2(a1,a2,q) - - M10=M_product_dim2*M1 - - self.M_gluing_dim2=M1 - - self.e4=e4 - - N_dim2=base_change_theta_dim2(M10,e4) - #N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1) - - # Gluing base change in dimension 4 - - self.M_gluing_dim4 = M_gluing_dim4 - - self.N_dim4 = base_change_theta_dim4(M_gluing_dim4, e4) - - # Kernel of the 2**m-isogeny chain in dimension 2 - a1_red=a1%(2**(m+2)) - a2_red=a2%(2**(m+2)) - if not dual: - B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)] - else: - B_K_dim2=[TuplePoint(2*a1_red*P1_m+2*a2_red*Q1_m,-2*R2_m),TuplePoint(2*a1_red*Q1_m-2*a2_red*P1_m,-2*S2_m)] - - # Computation of the 2**m-isogeny chain in dimension 2 - self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2) - - # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny) - lamb=inverse_mod(q,2**(m+3)) - B_K_dim4=kernel_basis(M_start_dim4,m+1,P1_m,Q1_m,R2_m,lamb*S2_m) - L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] - - L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)] - - # Product Theta structure on A_m^2 - self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain) - - # Theta structure on A_m^2 after base change - self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) - - # Converting the kernel to the Theta structure domain_base_change - L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)] - L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)] - - # Computing the gluing isogeny in dimension 4 - self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)]) - - # Translates for the evaluation of the gluing isogeny in dimension 4 - self.L_trans=[2*B_K_dim4[k] for k in range(2)] - self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) - - self._codomain=self._gluing_isogeny_dim4._codomain - - def evaluate(self,P): - if not isinstance(P, TuplePoint): - raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2") - - # Translating P - L_P_trans=[P+T for T in self.L_trans] - - # dim4 --> dim2 x dim2 - eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])] - eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans] - - # evaluating through the dimension 2 isogenies - eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])] - eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans] - - # Product Theta structure and base change - eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) - eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) - - eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] - eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] - - return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) - - def __call__(self,P): - return self.evaluate(P) - - def dual(self): - domain = self._codomain.hadamard() - codomain_base_change = self.domain_base_change - codomain_product = self.domain_product - N_dim4 = self.N_dim4.inverse() - isogenies_dim2 = self._isogenies_dim2.dual() - splitting_isogeny_dim4 = self._gluing_isogeny_dim4.dual() - - return KaniSplittingIsogenyChainDim4(domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4) - -class KaniSplittingIsogenyChainDim4: - def __init__(self, domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4): - self._domain = domain - self.codomain_base_change = codomain_base_change - self.codomain_product = codomain_product - self.N_dim4 = N_dim4 - self._isogenies_dim2 = isogenies_dim2 - self._splitting_isogeny_dim4 = splitting_isogeny_dim4 - - def evaluate(self,P): - if not isinstance(P, ThetaPointDim4): - raise TypeError("KaniSplittingIsogenyChainDim4 isogeny expects as input a ThetaPointDim4") - - Q = self._splitting_isogeny_dim4(P) - Q = self.codomain_product.base_change_coords(self.N_dim4, Q) - Q1, Q2 = self.codomain_product.to_theta_points(Q) - Q1, Q2 = self._isogenies_dim2._domain(Q1.hadamard()), self._isogenies_dim2._domain(Q2.hadamard()) - - Q1 = self._isogenies_dim2(Q1) - Q2 = self._isogenies_dim2(Q2) - - return TuplePoint(Q1[0],Q2[0],Q1[1],Q2[1]) - - def __call__(self,P): - return self.evaluate(P) diff --git a/theta_lib/isogenies/gluing_isogeny_dim4.py b/theta_lib/isogenies/gluing_isogeny_dim4.py deleted file mode 100644 index cd738c9..0000000 --- a/theta_lib/isogenies/gluing_isogeny_dim4.py +++ /dev/null @@ -1,200 +0,0 @@ -from sage.all import * - -from ..theta_structures.Theta_dim4 import ThetaStructureDim4 -from ..theta_structures.theta_helpers_dim4 import hadamard, squared, batch_inversion, multindex_to_index -from .tree import Tree -from .isogeny_dim4 import IsogenyDim4, DualIsogenyDim4 - -def proj_equal(P1, P2): - if len(P1) != len(P2): - return False - for i in range(0, len(P1)): - if P1[i]==0: - if P2[i] != 0: - return False - else: - break - r=P1[i] - s=P2[i] - for i in range(0, len(P1)): - if P1[i]*s != P2[i]*r: - return False - return True - -class GluingIsogenyDim4(IsogenyDim4): - def __init__(self,domain,L_K_8,L_K_8_ind, coerce=None): - r""" - Input: - - domain: a ThetaStructureDim4. - - L_K_8: list of points of 8-torsion in the kernel. - - L_K_8_ind: list of corresponding multindices (i0,i1,i2,i3) of points in L_K_8 - (L_K_8[i]=i0*P0+i1*P1+i2*P2+i3*P3, where (P0,..,P3) is a basis of K_8 (compatible with - the canonical basis of K_2) and L_K_8_ind[i]=(i0,i1,i2,i3)). - """ - - if not isinstance(domain, ThetaStructureDim4): - raise ValueError("Argument domain should be a ThetaStructureDim4 object.") - self._domain = domain - self._precomputation=None - self._coerce=coerce - self._special_compute_codomain(L_K_8,L_K_8_ind) - - #a_i2=squared(self._domain.zero()) - #HB_i2=hadamard(squared(hadamard(self._codomain.zero()))) - #for i in range(16): - #print(HB_i2[i]/a_i2[i]) - - def _special_compute_codomain(self,L_K_8,L_K_8_ind): - r""" - Input: - - L_K_8: list of points of 8-torsion in the kernel. - - L_K_8_ind: list of corresponding multindices (i0,i1,i2,i3) of points in L_K_8 - (L_K_8[i]=i0*P0+i1*P1+i2*P2+i3*P3, where (P0,..,P3) is a basis of K_8 (compatible with - the canonical basis of K_2) and L_K_8_ind[i]=(i0,i1,i2,i3)). - - Output: - - codomain of the isogeny. - Also initializes self._precomputation, containing the inverse of theta-constants. - """ - HSK_8=[hadamard(squared(P.coords())) for P in L_K_8] - - # Choice of reference index j_0<->chi_0 corresponding to a non-vanishing theta-constant. - found_tree=False - j_0=0 - while not found_tree: - found_k0=False - for k in range(len(L_K_8)): - if HSK_8[k][j_0]!=0: - k_0=k - found_k0=True - break - if not found_k0: - j_0+=1 - else: - j0pk0=j_0^multindex_to_index(L_K_8_ind[k_0]) - # List of tuples of indices (index chi of the denominator: HS(f(P_k))_chi, - #index chi.chi_k of the numerator: HS(f(P_k))_chi.chi_k, index k). - L_ratios_ind=[(j_0,j0pk0,k_0)] - L_covered_ind=[j_0,j0pk0] - - # Tree containing the the theta-null points indices as nodes and the L_ratios_ind reference indices as edges. - tree_ratios=Tree(j_0) - tree_ratios.add_child(Tree(j0pk0),0) - - # Filling in the tree - tree_filled=False - while not tree_filled: - found_j=False - for j in L_covered_ind: - for k in range(len(L_K_8)): - jpk=j^multindex_to_index(L_K_8_ind[k]) - if jpk not in L_covered_ind and HSK_8[k][j]!=0: - L_covered_ind.append(jpk) - L_ratios_ind.append((j,jpk,k)) - tree_j=tree_ratios.look_node(j) - tree_j.add_child(Tree(jpk),len(L_ratios_ind)-1) - found_j=True - #break - #if found_j: - #break - if not found_j or len(L_covered_ind)==16: - tree_filled=True - if len(L_covered_ind)!=16: - j_0+=1 - else: - found_tree=True - - L_denom=[HSK_8[t[2]][t[0]] for t in L_ratios_ind] - L_denom_inv=batch_inversion(L_denom) - L_num=[HSK_8[t[2]][t[1]] for t in L_ratios_ind] - L_ratios=[L_num[i]*L_denom_inv[i] for i in range(15)] - - L_coords_ind=tree_ratios.edge_product(L_ratios) - - O_coords=[ZZ(0) for i in range(16)] - for t in L_coords_ind: - if self._coerce: - O_coords[t[1]]=self._coerce(t[0]) - else: - O_coords[t[1]]=t[0] - - # Precomputation - # TODO: optimize inversions and give precomputation to the codomain _arithmetic_precomputation - L_prec=[] - L_prec_ind=[] - for i in range(16): - if O_coords[i]!=0: - L_prec.append(O_coords[i]) - L_prec_ind.append(i) - L_prec_inv=batch_inversion(L_prec) - precomputation=[None for i in range(16)] - for i in range(len(L_prec)): - precomputation[L_prec_ind[i]]=L_prec_inv[i] - - self._precomputation=precomputation - - for k in range(len(L_K_8)): - for j in range(16): - jpk=j^multindex_to_index(L_K_8_ind[k]) - assert HSK_8[k][j]*O_coords[jpk]==HSK_8[k][jpk]*O_coords[j] - - assert proj_equal(squared(self._domain._null_point.coords()), hadamard(squared(O_coords))) - - self._codomain=ThetaStructureDim4(hadamard(O_coords),null_point_dual=O_coords) - - def special_image(self,P,L_trans,L_trans_ind): - r"""Used when we cannot evaluate the isogeny self because the codomain has zero - dual theta constants. - - Input: - - P: ThetaPointDim4 of the domain. - - L_trans: list of translates of P+T of P by points of 4-torsion T above the kernel. - - L_trans_ind: list of indices of the translation 4-torsion points T. - If L_trans[i]=\sum i_j*B_K4[j] then L_trans_ind[j]=\sum 2**j*i_j. - - Output: - - the image of P by the isogeny self. - """ - HS_P=hadamard(squared(P.coords())) - HSL_trans=[hadamard(squared(Q.coords())) for Q in L_trans] - O_coords=self._codomain.null_point_dual() - - # L_lambda_inv: List of inverses of lambda_i such that: - # HS(P+Ti)=(lambda_i*U_{chi.chi_i,0}(f(P))*U_{chi,0}(0))_chi. - L_lambda_inv_num=[] - L_lambda_inv_denom=[] - - for k in range(len(L_trans)): - for j in range(16): - jpk=j^L_trans_ind[k] - if HSL_trans[k][j]!=0 and O_coords[jpk]!=0: - L_lambda_inv_num.append(HS_P[jpk]*O_coords[j]) - L_lambda_inv_denom.append(HSL_trans[k][j]*O_coords[jpk]) - break - L_lambda_inv_denom=batch_inversion(L_lambda_inv_denom) - L_lambda_inv=[L_lambda_inv_num[i]*L_lambda_inv_denom[i] for i in range(len(L_trans))] - - for k in range(len(L_trans)): - for j in range(16): - jpk=j^L_trans_ind[k] - assert HS_P[jpk]*O_coords[j]==L_lambda_inv[k]*HSL_trans[k][j]*O_coords[jpk] - - U_fP=[] - for i in range(16): - if self._precomputation[i]!=None: - U_fP.append(self._precomputation[i]*HS_P[i]) - else: - for k in range(len(L_trans)): - ipk=i^L_trans_ind[k] - if self._precomputation[ipk]!=None: - U_fP.append(self._precomputation[ipk]*HSL_trans[k][ipk]*L_lambda_inv[k]) - break - - fP=hadamard(U_fP) - if self._coerce: - fP=[self._coerce(x) for x in fP] - - return self._codomain(fP) - - def dual(self): - return DualIsogenyDim4(self._codomain,self._domain, hadamard=False) diff --git a/theta_lib/isogenies/isogeny_chain_dim4.py b/theta_lib/isogenies/isogeny_chain_dim4.py deleted file mode 100644 index 8c0b78e..0000000 --- a/theta_lib/isogenies/isogeny_chain_dim4.py +++ /dev/null @@ -1,114 +0,0 @@ -from sage.all import * -from ..utilities.strategy import precompute_strategy_with_first_eval, precompute_strategy_with_first_eval_and_splitting -from .isogeny_dim4 import IsogenyDim4 - - -class IsogenyChainDim4: - def __init__(self, B_K, first_isogenies, e, m, splitting=True, strategy = None): - self.e=e - self.m=m - - if strategy == None: - strategy = self.get_strategy(splitting) - self.strategy = strategy - - self._isogenies=self.isogeny_chain(B_K, first_isogenies) - - - def get_strategy(self,splitting): - if splitting: - return precompute_strategy_with_first_eval_and_splitting(self.e,self.m,M=1,S=0.8,I=100) - else: - return precompute_strategy_with_first_eval(self.e,self.m,M=1,S=0.8,I=100) - - def isogeny_chain(self, B_K, first_isogenies): - """ - Compute the isogeny chain and store intermediate isogenies for evaluation - """ - # Store chain of (2,2)-isogenies - isogeny_chain = [] - - # Bookkeeping for optimal strategy - strat_idx = 0 - level = [0] - ker = B_K - kernel_elements = [ker] - - # Length of the chain - n=self.e-self.m - - for k in range(n): - prev = sum(level) - ker = kernel_elements[-1] - - while prev != (n - 1 - k): - level.append(self.strategy[strat_idx]) - prev += self.strategy[strat_idx] - - # Perform the doublings and update kernel elements - # Prevent the last unnecessary doublings for first isogeny computation - if k>0 or prev!=n-1: - ker = [ker[i].double_iter(self.strategy[strat_idx]) for i in range(4)] - kernel_elements.append(ker) - - # Update bookkeeping variable - strat_idx += 1 - - # Compute the codomain from the 8-torsion - if k==0: - phi = first_isogenies - else: - phi = IsogenyDim4(Th,ker) - - # Update the chain of isogenies - Th = phi._codomain - # print(parent(Th.null_point().coords()[0])) - isogeny_chain.append(phi) - - # Remove elements from list - if k>0: - kernel_elements.pop() - level.pop() - - # Push through points for the next step - kernel_elements = [[phi(T) for T in kernel] for kernel in kernel_elements] - # print([[parent(T.coords()[0]) for T in kernel] for kernel in kernel_elements]) - - return isogeny_chain - - def evaluate_isogeny(self,P): - Q=P - for f in self._isogenies: - Q=f(Q) - return Q - - def __call__(self,P): - return self.evaluate_isogeny(P) - - def dual(self): - n=len(self._isogenies) - isogenies=[] - for i in range(n): - isogenies.append(self._isogenies[n-1-i].dual()) - return DualIsogenyChainDim4(isogenies) - - -class DualIsogenyChainDim4: - def __init__(self,isogenies): - self._isogenies=isogenies - - def evaluate_isogeny(self,P): - n=len(self._isogenies) - Q=P - for j in range(n): - Q=self._isogenies[j](Q) - return Q - - def __call__(self,P): - return self.evaluate_isogeny(P) - - - - - - diff --git a/theta_lib/isogenies/isogeny_dim4.py b/theta_lib/isogenies/isogeny_dim4.py deleted file mode 100644 index 2f483bf..0000000 --- a/theta_lib/isogenies/isogeny_dim4.py +++ /dev/null @@ -1,162 +0,0 @@ -from sage.all import * - -from ..theta_structures.Theta_dim4 import ThetaStructureDim4 -from ..theta_structures.theta_helpers_dim4 import hadamard, squared, batch_inversion -from .tree import Tree - -class IsogenyDim4: - def __init__(self,domain,K_8,codomain=None,precomputation=None): - r""" - Input: - - domain: a ThetaStructureDim4. - - K_8: a list of 4 points of 8-torision (such that 4*K_8 is a kernel basis), used to compute the codomain. - - codomain: a ThetaStructureDim4 (for the codomain, used only when K_8 is None). - - precomputation: list of inverse of dual theta constants of the codomain, used to compute the image. - """ - - if not isinstance(domain, ThetaStructureDim4): - raise ValueError("Argument domain should be a ThetaStructureDim4 object.") - self._domain = domain - self._precomputation=None - if K_8!=None: - self._compute_codomain(K_8) - else: - self._codomain=codomain - self._precomputation=precomputation - - def _compute_codomain(self,K_8): - r""" - Input: - - K_8: a list of 4 points of 8-torision (such that 4*K_8 is a kernel basis). - - Output: - - codomain of the isogeny. - Also initializes self._precomputation, containing the inverse of theta-constants. - """ - HSK_8=[hadamard(squared(P.coords())) for P in K_8] - - # Choice of reference index j_0<->chi_0 corresponding to a non-vanishing theta-constant. - found_tree=False - j_0=0 - while not found_tree: - found_k0=False - for k in range(4): - if j_0>15: - raise NotImplementedError("The codomain of this 2-isogeny could not be computed.\nWe may have encountered a product of abelian varieties\nsomewhere unexpected along the chain.\nThis is exceptionnal and should not happen in larger characteristic.") - if HSK_8[k][j_0]!=0: - k_0=k - found_k0=True - break - if not found_k0: - j_0+=1 - else: - j0pk0=j_0^(2**k_0) - # List of tuples of indices (index chi of the denominator: HS(f(P_k))_chi, - #index chi.chi_k of the numerator: HS(f(P_k))_chi.chi_k, index k). - L_ratios_ind=[(j_0,j0pk0,k_0)] - L_covered_ind=[j_0,j0pk0] - - # Tree containing the the theta-null points indices as nodes and the L_ratios_ind reference indices as edges. - tree_ratios=Tree(j_0) - tree_ratios.add_child(Tree(j0pk0),k_0) - - # Filling in the tree - tree_filled=False - while not tree_filled: - found_j=False - for j in L_covered_ind: - for k in range(4): - jpk=j^(2**k) - if jpk not in L_covered_ind and HSK_8[k][j]!=0: - L_covered_ind.append(jpk) - L_ratios_ind.append((j,jpk,k)) - tree_j=tree_ratios.look_node(j) - tree_j.add_child(Tree(jpk),len(L_ratios_ind)-1) - found_j=True - break - if found_j: - break - if not found_j or len(L_covered_ind)==16: - tree_filled=True - if len(L_covered_ind)!=16: - j_0+=1 - else: - found_tree=True - - L_denom=[HSK_8[t[2]][t[0]] for t in L_ratios_ind] - L_denom_inv=batch_inversion(L_denom) - L_num=[HSK_8[t[2]][t[1]] for t in L_ratios_ind] - L_ratios=[L_num[i]*L_denom_inv[i] for i in range(15)] - - L_coords_ind=tree_ratios.edge_product(L_ratios) - - O_coords=[ZZ(0) for i in range(16)] - for t in L_coords_ind: - O_coords[t[1]]=t[0] - - # Precomputation - # TODO: optimize inversions - L_prec=[] - L_prec_ind=[] - for i in range(16): - if O_coords[i]!=0: - L_prec.append(O_coords[i]) - L_prec_ind.append(i) - L_prec_inv=batch_inversion(L_prec) - precomputation=[None for i in range(16)] - for i in range(len(L_prec)): - precomputation[L_prec_ind[i]]=L_prec_inv[i] - - self._precomputation=precomputation - # Assumes there is no zero theta constant. Otherwise, squared(precomputation) will raise an error (None**2 does not exist) - self._codomain=ThetaStructureDim4(hadamard(O_coords),null_point_dual=O_coords) - - def codomain(self): - return self._codomain - - def domain(self): - return self._domain - - def image(self,P): - HS_P=list(hadamard(squared(P.coords()))) - - for i in range(16): - HS_P[i] *=self._precomputation[i] - - return self._codomain(hadamard(HS_P)) - - def dual(self): - return DualIsogenyDim4(self._codomain,self._domain, hadamard=True) - - def __call__(self,P): - return self.image(P) - - -class DualIsogenyDim4: - def __init__(self,domain,codomain,hadamard=True): - # domain and codomain are respectively the domain and codomain of \tilde{f}: domain-->codomain, - # so respectively the codomain and domain of f: codomain-->domain. - # By convention, domain input is given in usual coordinates (ker(\tilde{f})=K_2). - # codomain is in usual coordinates if hadamard, in dual coordinates otherwise. - self._domain=domain.hadamard() - self._hadamard=hadamard - if hadamard: - self._codomain=codomain.hadamard() - self._precomputation=batch_inversion(codomain.zero().coords()) - else: - self._codomain=codomain - self._precomputation=batch_inversion(codomain.zero().coords()) - - def image(self,P): - # When ker(f)=K_2, ker(\tilde{f})=K_1 so ker(\tilde{f})=K_2 after hadamard transformation of the - # new domain (ex codomain) - HS_P=list(hadamard(squared(P.coords()))) - for i in range(16): - HS_P[i] *=self._precomputation[i] - if self._hadamard: - return self._codomain(hadamard(HS_P)) - else: - return self._codomain(HS_P) - - def __call__(self,P): - return self.image(P) diff --git a/theta_lib/isogenies/tree.py b/theta_lib/isogenies/tree.py deleted file mode 100644 index a6e3da3..0000000 --- a/theta_lib/isogenies/tree.py +++ /dev/null @@ -1,28 +0,0 @@ -from sage.all import * - -class Tree: - def __init__(self,node): - self._node=node - self._edges=[] - self._children=[] - - def add_child(self,child,edge): - self._children.append(child) - self._edges.append(edge) - - def look_node(self,node): - if self._node==node: - return self - elif len(self._children)>0: - for child in self._children: - t_node=child.look_node(node) - if t_node!=None: - return t_node - - def edge_product(self,L_factors,factor_node=ZZ(1)): - n=len(self._children) - L_prod=[(factor_node,self._node)] - for i in range(n): - L_prod+=self._children[i].edge_product(L_factors,factor_node*L_factors[self._edges[i]]) - return L_prod - |