diff options
author | Ryan Rueger <git@rueg.re> | 2025-03-01 20:25:41 +0100 |
---|---|---|
committer | Ryan Rueger <git@rueg.re> | 2025-03-01 22:11:11 +0100 |
commit | d40de259097c5e8d8fd35539560ca7c3d47523e7 (patch) | |
tree | 18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/isogenies | |
download | pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2 pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip |
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com>
Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com>
Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com>
Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com>
Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com>
Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s]
Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr>
Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net>
Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/isogenies')
-rw-r--r-- | theta_lib/isogenies/Kani_clapoti.py | 258 | ||||
-rw-r--r-- | theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py | 567 | ||||
-rw-r--r-- | theta_lib/isogenies/gluing_isogeny_dim4.py | 200 | ||||
-rw-r--r-- | theta_lib/isogenies/isogeny_chain_dim4.py | 114 | ||||
-rw-r--r-- | theta_lib/isogenies/isogeny_dim4.py | 162 | ||||
-rw-r--r-- | theta_lib/isogenies/tree.py | 28 |
6 files changed, 1329 insertions, 0 deletions
diff --git a/theta_lib/isogenies/Kani_clapoti.py b/theta_lib/isogenies/Kani_clapoti.py new file mode 100644 index 0000000..66030e2 --- /dev/null +++ b/theta_lib/isogenies/Kani_clapoti.py @@ -0,0 +1,258 @@ +from sage.all import * +import itertools + +from ..basis_change.kani_base_change import clapoti_cob_splitting_matrix +from ..basis_change.base_change_dim4 import base_change_theta_dim4 +from ..theta_structures.Tuple_point import TuplePoint +from ..theta_structures.montgomery_theta import null_point_to_montgomery_coeff, theta_point_to_montgomery_point +from ..theta_structures.theta_helpers_dim4 import product_to_theta_points_dim4 +from ..utilities.supersingular import torsion_basis_to_Fp_rational_point +from .Kani_gluing_isogeny_chain_dim4 import KaniClapotiGluing +from .isogeny_chain_dim4 import IsogenyChainDim4 + +class KaniClapotiIsog(IsogenyChainDim4): + r"""Class representing the 4-dimensional isogeny obtained via Kani's lemma F: Eu^2*Ev^2 --> Ea^2*A + where Ea=[\mf{a}]*E is the result of the ideal class group action by \mf{a} when given relevant + constants and torsion point information. + + INPUT: + - Pu, Qu = phi_u(P, Q)\in Eu; + - Pv, Qv = phi_v*phi_{ck}*\hat{\phi}_{bk}(P, Q)\in Ev; + - gu, xu, yu, gv, xv, yv, Nbk, Nck, e: positive integers; + where: + * gu(xu^2+yu^2)Nbk+gv(xv^2+yv^2)Nck=2^e; + * gcd(u*Nbk,v*Nck)=1 with u:=gu(xu^2+yu^2) and v:=gv(xv^2+yv^2); + * xu and xv are odd and yu and yv are even; + * \mf{b}=\mf{be}*\mf{bk} is a product of ideals of norms Nbe and Nbk respectively, + where Nbe is a product of small Elkies primes; + * \mf{c}=\mf{ce}*\mf{ck} is a product of ideals of norms Nce and Nck respectively, + where Nbe is a product of small Elkies primes; + * phi_{bk}: E --> E1 and phi_{ck}: E --> E2 are induced by the action of + ideals \mf{bk} and \mf{ck} respectively; + * <P,Q>=E_1[2^{e+2}]; + * phi_u: E1 --> Eu and phi_v: E2 --> Ev are gu and gv-isogenies respectively. + + OUTPUT: F: Eu^2*Ev^2 --> Ea^2*A is the isogeny: + + F := [[Phi_{bp}*\tilde{Phi}_u, Phi_{cp}*\tilde{Phi}_v], + [-Psi, \tilde{Phi}]] + + obtained from the Kani isogeny diamond: + + A --------------------Phi------------------> Ev^2 + ^ ^ + | | + | Phi_v + | | + Psi E2^2 + | ^ + | | + | \tilde{Phi}_{ck} + | | + Eu^2 --\tilde{Phi}_{u}--> E1^2 --Phi_{bk}--> Ea^2 + + where Phi_{bk}:=Diag(phi_{bk},phi_{bk}), Phi_{ck}:=Diag(phi_{ck},phi_{ck}), + + Phi_u := [[xu, -yu], + [yu, xu]] * Diag(phi_u,phi_u) + + Phi_v := [[xv, -yv], + [yv, xv]] * Diag(phi_v,phi_v) + """ + + def __init__(self,points,integers,strategy=None): + gu,xu,yu,gv,xv,yv,Nbk,Nck,e = integers + Pu,Qu,Pv,Qv = points + if gu*(xu**2+yu**2)*Nbk+gv*(xv**2+yv**2)*Nck!=2**e: + raise ValueError("Wrong parameters: gu(xu^2+yu^2)Nbk + gv(xv^2+yv^2)Nck != 2^e") + if gcd(ZZ(gu*(xu**2+yu**2)*Nbk),ZZ(gv*(xv**2+yv**2)*Nck))!=1: + raise ValueError("Non coprime parameters: gcd(gu(xu^2+yu^2)Nbk, gv(xv^2+yv^2)Nck) != 1") + if xu%2==0: + xu,yu=yu,xu + if xv%2==0: + xv,yv=yv,xv + + self.Eu = Pu.curve() + self.Ev = Pv.curve() + Fp2 = parent(Pu[0]) + Fp = Fp2.base_ring() + + # Number of dimension 2 steps before dimension 4 gluing Am^2-->B + m=valuation(xv*yu-xu*yv,2) + integers=[gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m] + + points_mp3=[(2**(e-m-1))*P for P in points] + points_mp2=[2*P for P in points_mp3] + points_4=[(2**m)*P for P in points_mp2] + + self.Ru_Fp = torsion_basis_to_Fp_rational_point(self.Eu,points_4[0],points_4[1],4) + + self.gluing_isogeny_chain = KaniClapotiGluing(points_mp3,points_mp2,points_4,integers, coerce=Fp) + + xuNbk = xu*Nbk + yuNbk = yu*Nbk + two_ep2 = 2**(e+2) + inv_Nbk = inverse_mod(Nbk,two_ep2) + u = gu*(xu**2+yu**2) + inv_u = inverse_mod(u,4) + lambxu = ((1-2**e*inv_u*inv_Nbk)*xu)%two_ep2 + lambyu = ((1-2**e*inv_u*inv_Nbk)*yu)%two_ep2 + xv_Nbk = (xv*inv_Nbk)%two_ep2 + yv_Nbk = (yv*inv_Nbk)%two_ep2 + + + B_Kpp = [TuplePoint(xuNbk*Pu,yuNbk*Pu,xv*Pv,yv*Pv), + TuplePoint(-yuNbk*Pu,xuNbk*Pu,-yv*Pv,xv*Pv), + TuplePoint(lambxu*Qu,lambyu*Qu,xv_Nbk*Qv,yv_Nbk*Qv), + TuplePoint(-lambyu*Qu,lambxu*Qu,-yv_Nbk*Qv,xv_Nbk*Qv)] + + IsogenyChainDim4.__init__(self, B_Kpp, self.gluing_isogeny_chain, e, m, splitting=True, strategy=strategy) + + # Splitting + M_split = clapoti_cob_splitting_matrix(integers) + + self.N_split = base_change_theta_dim4(M_split,self.gluing_isogeny_chain.e4) + + self.codomain_product = self._isogenies[-1]._codomain.base_change_struct(self.N_split) + + # Extracting the group action image Ea=[\mathfrak{a}]*E from the codomain Ea^2*E'^2 + self.theta_null_Ea, self.theta_null_Ep, self.Ea, self.Ep = self.extract_montgomery_curve() + + + + def extract_montgomery_curve(self): + + # Computing the theta null point of Ea + null_point=self.codomain_product.zero() + Fp2=parent(null_point[0]) + Fp = Fp2.base_ring() + for i3, i4 in itertools.product([0,1],repeat=2): + if null_point[4*i3+8*i4]!=0: + i30=i3 + i40=i4 + theta_Ea_0=Fp(null_point[4*i3+8*i4]) + theta_Ea_1=Fp(null_point[1+4*i3+8*i4]) + break + for i1, i2 in itertools.product([0,1],repeat=2): + if null_point[i1+2*i2]!=0: + i10=i1 + i20=i2 + theta_Ep_0=Fp(null_point[i1+2*i2]) + theta_Ep_1=Fp(null_point[i1+2*i2+4]) + break + + # Sanity check: is the codomain of F a product of the form Ea^2*E'^2 ? + theta_Ea=[Fp(theta_Ea_0),Fp(theta_Ea_1)] + theta_Ep=[Fp(theta_Ep_0),Fp(theta_Ep_1)] + + theta_Ea2Ep2=[0 for i in range(16)] + for i1,i2,i3,i4 in itertools.product([0,1],repeat=4): + theta_Ea2Ep2[i1+2*i2+4*i3+8*i4]=theta_Ea[i1]*theta_Ea[i2]*theta_Ep[i3]*theta_Ep[i4] + theta_Ea2Ep2=self.codomain_product(theta_Ea2Ep2) + + assert theta_Ea2Ep2.is_zero() + + A_Ep = null_point_to_montgomery_coeff(theta_Ep_0,theta_Ep_1) + Ep = EllipticCurve([0,A_Ep,0,1,0]) + + ## ## Recovering Ea over Fp and not Fp2 + ## self.find_Fp_rational_theta_struct_Ea() + + ## theta_Ea = self.iso_Ea(theta_Ea) + ## A_Ea = null_point_to_montgomery_coeff(theta_Ea[0],theta_Ea[1]) + + ## # Sanity check : the curve Ea should be defined over Fp + ## # assert A_Ea[1] == 0 + + ## # Twisting Ea if necessary: if A_Ea+2 is not a square in Fp, then we take the twist (A_Ea --> -A_Ea) + ## p=self.Eu.base_field().characteristic() + ## self.twist = False + ## if (A_Ea+2)**((p-1)//2)==-1: + ## A_Ea = -A_Ea + ## self.twist = True + + ## Ea = EllipticCurve([0,A_Ea,0,1,0]) + + A = null_point_to_montgomery_coeff(theta_Ea_0, theta_Ea_1) + Ab = null_point_to_montgomery_coeff(theta_Ea_0+theta_Ea_1, theta_Ea_0-theta_Ea_1) + Acan = min([A, -A, Ab, -Ab]) + Acan = A + if (Acan == A or Acan == -A): + # 'Id' corresponds to the point on the twist + self.iso_type = 'Id' + else: + # 'Hadamard' corresponds to the point on the curve + self.iso_type = 'Hadamard' + if ((self.iso_type == 'Hadamard' and not (Acan+2).is_square()) or (self.iso_type == 'Id' and (Acan+2).is_square())): + Acan=-Acan + if (Acan == A or Acan == Ab): + self.twist = False + else: + self.twist = True + Ea = EllipticCurve([0,Acan,0,1,0]) + + # Find the dual null point + return theta_Ea, theta_Ep, Ea, Ep + + def eval_rational_point_4_torsion(self): + T = TuplePoint(self.Ru_Fp,self.Eu(0),self.Ev(0),self.Ev(0)) + + FPu_4 = self.evaluate_isogeny(T) + FPu_4=self.codomain_product.base_change_coords(self.N_split,FPu_4) + FPu_4=product_to_theta_points_dim4(FPu_4) + + return FPu_4[0] + + def find_Fp_rational_theta_struct_Ea(self): + Pa = self.eval_rational_point_4_torsion() + + HPa = (Pa[0]+Pa[1],Pa[0]-Pa[1]) + i = self.Eu.base_field().gen() + self.i = i + iHPa = (Pa[0]+i*Pa[1],Pa[0]-i*Pa[1]) + + if Pa[0]==0 or Pa[1]==0: + self.iso_type='Id' + elif HPa[0]==0 or HPa[1]==0: + self.iso_type='Hadamard' + elif iHPa[0]==0 or iHPa[1]==0: + self.iso_type='iHadamard' + else: + raise ValueError("A rational theta point should be mapped to (0:1) or (1:0) after change of theta coordinates on Ea.") + + def iso_Ea(self,P): + # Change of theta coordinates to obtain Fp-rational theta coordinates on Ea + + if self.iso_type == 'Id': + return P + elif self.iso_type == 'Hadamard': + return (P[0]+P[1],P[0]-P[1]) + else: + return (P[0]+self.i*P[1],P[0]-self.i*P[1]) + + + def evaluate(self,P): + FP=self.evaluate_isogeny(P) + FP=self.codomain_product.base_change_coords(self.N_split,FP) + + FP=product_to_theta_points_dim4(FP) + FP=TuplePoint([theta_point_to_montgomery_point(self.Ea,self.theta_null_Ea,self.iso_Ea(FP[0]),self.twist), + theta_point_to_montgomery_point(self.Ea,self.theta_null_Ea,self.iso_Ea(FP[1]),self.twist), + theta_point_to_montgomery_point(self.Ep,self.theta_null_Ep,FP[2]), + theta_point_to_montgomery_point(self.Ep,self.theta_null_Ep,FP[3])]) + + return FP + + def __call__(self,P): + return self.evaluate(P) + + + + + + + + + + + diff --git a/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py b/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py new file mode 100644 index 0000000..282219c --- /dev/null +++ b/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py @@ -0,0 +1,567 @@ +from sage.all import * +from ..utilities.discrete_log import weil_pairing_pari +from ..basis_change.canonical_basis_dim1 import make_canonical +from ..basis_change.kani_base_change import ( + fixed_deg_gluing_matrix_Phi1, + fixed_deg_gluing_matrix_Phi2, + fixed_deg_gluing_matrix_dim4, + clapoti_cob_matrix_dim2, + clapoti_cob_matrix_dim2_dim4, + gluing_base_change_matrix_dim2, + gluing_base_change_matrix_dim2_dim4, + gluing_base_change_matrix_dim2_F1, + gluing_base_change_matrix_dim2_F2, + kernel_basis, +) +from ..basis_change.base_change_dim2 import base_change_theta_dim2 +from ..basis_change.base_change_dim4 import base_change_theta_dim4 +from ..theta_structures.Theta_dim1 import ThetaStructureDim1 +from ..theta_structures.Theta_dim2 import ProductThetaStructureDim2 +from ..theta_structures.Tuple_point import TuplePoint +from ..theta_structures.Theta_dim4 import ProductThetaStructureDim2To4, ThetaPointDim4 +from ..isogenies_dim2.isogeny_chain_dim2 import IsogenyChainDim2 +from .gluing_isogeny_dim4 import GluingIsogenyDim4 + +class KaniFixedDegDim2Gluing: + def __init__(self,P_mp3,Q_mp3,a,b,c,d,u,f,m,strategy_dim2=None): + r""" + INPUT: + - P_mp3, Q_mp3: basis of E[2^(m+3)] such that pi(P_mp3)=P_mp3 and pi(Q_mp3)=-Q_mp3. + - a,b,c,d,u,f: integers such that a**2+c**2+p*(b**2+d**2)=u*(2**f-u), where p is + ths characteristic of the base field. + - m: integer such that m=min(v_2(a-b),v_2(a+b)). + + OUTPUT: Gluing isogeny chain F_{m+1}\circ...\circ F_1 containing the first m+1 steps of + the isogeny F: E^4 --> A*A' representing a u-isogeny in dimension 2. + """ + + P_mp2 = 2*P_mp3 + Q_mp2 = 2*Q_mp3 + P_4 = 2**m*P_mp2 + Q_4 = 2**m*Q_mp2 + + E = P_mp3.curve() + + # Canonical basis with S_4=(1,0) + _, _, R_4, S_4, M_dim1 = make_canonical(P_4,Q_4,4,preserve_pairing=True) + + Z4 = Integers(4) + M0 = matrix(Z4,[[M_dim1[0,0],0,M_dim1[0,1],0], + [0,M_dim1[0,0],0,M_dim1[0,1]], + [M_dim1[1,0],0,M_dim1[1,1],0], + [0,M_dim1[1,0],0,M_dim1[1,1]]]) + + # Theta structures + Theta_E = ThetaStructureDim1(E,R_4,S_4) + Theta_EE = ProductThetaStructureDim2(Theta_E,Theta_E) + + # Gluing change of basis in dimension 2 + M1 = fixed_deg_gluing_matrix_Phi1(u,a,b,c,d) + M2 = fixed_deg_gluing_matrix_Phi2(u,a,b,c,d) + + M10 = M0*M1 + M20 = M0*M2 + + Fp2 = E.base_field() + e4 = Fp2(weil_pairing_pari(R_4,S_4,4)) + + N_Phi1 = base_change_theta_dim2(M10,e4) + N_Phi2 = base_change_theta_dim2(M20,e4) + + # Gluing change of basis dimension 2 * dimension 2 --> dimension 4 + M_dim4 = fixed_deg_gluing_matrix_dim4(u,a,b,c,d,m) + + self.N_dim4 = base_change_theta_dim4(M_dim4,e4) + + # Kernel of Phi1 : E^2 --> A_m1 and Phi2 : E^2 --> A_m2 + two_mp2 = 2**(m+2) + two_mp3 = 2*two_mp2 + mu = inverse_mod(u,two_mp3) + + B_K_Phi1 = [TuplePoint((u%two_mp2)*P_mp2,((c+d)%two_mp2)*P_mp2), + TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,((c-d)%two_mp2)*Q_mp2)] + + B_K_Phi2 = [TuplePoint((u%two_mp2)*P_mp2,((d-c)%two_mp2)*P_mp2), + TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,(-(c+d)%two_mp2)*Q_mp2)] + + # Computation of the 2**m-isogenies Phi1 and Phi2 + self._Phi1=IsogenyChainDim2(B_K_Phi1,Theta_EE,N_Phi1,m,strategy_dim2) + self._Phi2=IsogenyChainDim2(B_K_Phi2,Theta_EE,N_Phi2,m,strategy_dim2) + + # Kernel of the (m+1)-th isogeny in dimension 4 F_{m+1}: A_m1*A_m2 --> B (gluing isogeny) + + B_K_dim4 =[TuplePoint((u%two_mp3)*P_mp3,E(0),((a+b)%two_mp3)*P_mp3,((c+d)%two_mp3)*P_mp3), + TuplePoint(E(0),(u%two_mp3)*P_mp3,((d-c)%two_mp3)*P_mp3,((a-b)%two_mp3)*P_mp3), + TuplePoint(((u-2**f)%two_mp3)*Q_mp3,E(0),((a-b)%two_mp3)*Q_mp3,((c-d)%two_mp3)*Q_mp3), + TuplePoint(E(0),((u-2**f)%two_mp3)*Q_mp3,((-c-d)%two_mp3)*Q_mp3,((a+b)%two_mp3)*Q_mp3)] + + L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] + + L_K_dim4=[[self._Phi1(TuplePoint(T[0],T[3])),self._Phi2(TuplePoint(T[1],T[2]))] for T in L_K_dim4] + + # Product Theta structure on A_m1*A_m2 + self.domain_product=ProductThetaStructureDim2To4(self._Phi1._codomain,self._Phi2._codomain) + + # Theta structure on A_m1*A_m2 after change of theta coordinates + self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) + + # Converting the kernel to the Theta structure domain_base_change + L_K_dim4=[self.domain_product.product_theta_point(T[0],T[1]) for T in L_K_dim4] + L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,T) for T in L_K_dim4] + + # Computing the gluing isogeny in dimension 4 + self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)]) + + # Translates for the evaluation of the gluing isogeny in dimension 4 + self.L_trans=[2*B_K_dim4[k] for k in range(2)] + self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) + + self._codomain=self._gluing_isogeny_dim4._codomain + + def evaluate(self,P): + if not isinstance(P, TuplePoint): + raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E^4") + + # Translating P + L_P_trans=[P+T for T in self.L_trans] + + # dim4 --> dim2 x dim2 + eval_P=[TuplePoint(P[0],P[3]),TuplePoint(P[1],P[2])] + eval_L_P_trans=[[TuplePoint(Q[0],Q[3]),TuplePoint(Q[1],Q[2])] for Q in L_P_trans] + + # evaluating through the dimension 2 isogenies + eval_P=[self._Phi1(eval_P[0]),self._Phi2(eval_P[1])] + eval_L_P_trans=[[self._Phi1(Q[0]),self._Phi2(Q[1])] for Q in eval_L_P_trans] + + # Product Theta structure and base change + eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) + eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) + + eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] + eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] + + return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) + + def __call__(self,P): + return self.evaluate(P) + + +class KaniClapotiGluing: + def __init__(self,points_mp3,points_mp2,points_4,integers,strategy_dim2=None,coerce=None): + self._coerce=coerce + Pu_mp3,Qu_mp3,Pv_mp3,Qv_mp3 = points_mp3 + Pu_mp2,Qu_mp2,Pv_mp2,Qv_mp2 = points_mp2 + Pu_4,Qu_4,Pv_4,Qv_4 = points_4 + gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers + + Eu=Pu_4.curve() + Ev=Pv_4.curve() + + lamb_u = inverse_mod(ZZ(gu),4) + lamb_v = inverse_mod(ZZ(gv*Nbk*Nck),4) + + + # 4-torsion canonical change of basis in Eu and Ev (Su=(1,0), Sv=(1,0)) + _,_,Ru,Su,Mu=make_canonical(Pu_4,lamb_u*Qu_4,4,preserve_pairing=True) + _,_,Rv,Sv,Mv=make_canonical(Pv_4,lamb_v*Qv_4,4,preserve_pairing=True) + + Z4 = Integers(4) + M0=matrix(Z4,[[Mu[0,0],0,Mu[1,0],0], + [0,Mv[0,0],0,Mv[1,0]], + [Mu[0,1],0,Mu[1,1],0], + [0,Mv[0,1],0,Mv[1,1]]]) + + self.M_product_dim2=M0 + + # Theta structures in dimension 1 and 2 + Theta_u=ThetaStructureDim1(Eu,Ru,Su) + Theta_v=ThetaStructureDim1(Ev,Rv,Sv) + + Theta_uv=ProductThetaStructureDim2(Theta_u,Theta_v) + + # Gluing change of basis in dimension 2 + M1 = clapoti_cob_matrix_dim2(integers) + M10 = M0*M1 + + Fp2 = Eu.base_field() + e4 = Fp2(weil_pairing_pari(Ru,Su,4)) + self.e4 = e4 + + N_dim2 = base_change_theta_dim2(M10,e4) + + # Gluing change of basis dimension 2 * dimension 2 --> dimension 4 + M2 = clapoti_cob_matrix_dim2_dim4(integers) + + self.N_dim4 = base_change_theta_dim4(M2,e4) + + # Kernel of the 2**m-isogeny chain in dimension 2 + two_mp2=2**(m+2) + two_mp3=2*two_mp2 + u=ZZ(gu*(xu**2+yu**2)) + mu=inverse_mod(u,two_mp2) + suv=ZZ(xu*xv+yu*yv) + duv=ZZ(xv*yu-xu*yv) + uNbk=(u*Nbk)%two_mp2 + gusuv=(gu*suv)%two_mp2 + xK2=(uNbk+gu*gv*mu*Nck*duv**2)%two_mp2 + B_K_dim2 = [TuplePoint(uNbk*Pu_mp2,gusuv*Pv_mp2),TuplePoint(xK2*Qu_mp2,gusuv*Qv_mp2)] + + # Computation of the 2**m-isogeny chain in dimension 2 + self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta_uv,N_dim2,m,strategy_dim2) + + # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny) + xuNbk = (xu*Nbk)%two_mp3 + yuNbk = (yu*Nbk)%two_mp3 + inv_Nbk = inverse_mod(Nbk,two_mp3) + lambxu = ((1-2**e)*xu)%two_mp3 # extreme case m=e-2, 2^e = 2^(m+2) so 2^e/(u*Nbk) = 2^e mod 2^(m+3). + lambyu = ((1-2**e)*yu)%two_mp3 + xv_Nbk = (xv*inv_Nbk)%two_mp3 + yv_Nbk = (yv*inv_Nbk)%two_mp3 + + B_K_dim4 = [TuplePoint(xuNbk*Pu_mp3,yuNbk*Pu_mp3,xv*Pv_mp3,yv*Pv_mp3), + TuplePoint(-yuNbk*Pu_mp3,xuNbk*Pu_mp3,-yv*Pv_mp3,xv*Pv_mp3), + TuplePoint(lambxu*Qu_mp3,lambyu*Qu_mp3,xv_Nbk*Qv_mp3,yv_Nbk*Qv_mp3), + TuplePoint(-lambyu*Qu_mp3,lambxu*Qu_mp3,-yv_Nbk*Qv_mp3,xv_Nbk*Qv_mp3)] + + L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] + + L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)] + + # Product Theta structure on A_m^2 + self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain) + + # Theta structure on A_m^2 after change of theta coordinates + self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) + + # Converting the kernel to the Theta structure domain_base_change + L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)] + L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)] + + # Computing the gluing isogeny in dimension 4 + self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)], coerce=self._coerce) + + # Translates for the evaluation of the gluing isogeny in dimension 4 + self.L_trans=[2*B_K_dim4[k] for k in range(2)] + self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) + + self._codomain=self._gluing_isogeny_dim4._codomain + + def evaluate(self,P): + if not isinstance(P, TuplePoint): + raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product Eu^2 x Ev^2") + + # Translating P + L_P_trans=[P+T for T in self.L_trans] + + # dim4 --> dim2 x dim2 + eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])] + eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans] + + # evaluating through the dimension 2 isogenies + eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])] + eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans] + + # Product Theta structure and base change + eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) + eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) + + eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] + eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] + + return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) + + def __call__(self,P): + return self.evaluate(P) + + + +class KaniGluingIsogenyChainDim4: + def __init__(self,points_m,points_4,a1,a2,q,m,strategy_dim2=None): + r""" + + INPUT: + - points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3) + such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is + its image by sigma: E1 --> E2. + - points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by + multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1). + - a1, a2, q: integers such that a1**2+a2**2+q=2**e. + - m: 2-adic valuation of a2. + + OUTPUT: Composition of the m+1 first isogenies in the isogeny chained + E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma. + """ + + P1_m, Q1_m, R2_m, S2_m = points_m + P1_4, Q1_4, R2_4, S2_4 = points_4 + + E1=P1_m.curve() + E2=R2_m.curve() + + Fp2=E1.base_field() + + lamb=inverse_mod(q,4) + + _,_,T1,T2,MT=make_canonical(P1_4,Q1_4,4,preserve_pairing=True) + _,_,U1,U2,MU=make_canonical(R2_4,lamb*S2_4,4,preserve_pairing=True) + + Z4=Integers(4) + M0=matrix(Z4,[[MT[0,0],0,MT[1,0],0], + [0,MU[0,0],0,MU[1,0]], + [MT[0,1],0,MT[1,1],0], + [0,MU[0,1],0,MU[1,1]]]) + + self.M_product_dim2=M0 + + # Theta structures in dimension 1 and 2 + Theta1=ThetaStructureDim1(E1,T1,T2) + Theta2=ThetaStructureDim1(E2,U1,U2) + + Theta12=ProductThetaStructureDim2(Theta1,Theta2) + + self.Theta1=Theta1 + self.Theta2=Theta2 + self.Theta12=Theta12 + + # Gluing base change in dimension 2 + M1=gluing_base_change_matrix_dim2(a1,a2,q) + M10=M0*M1 + + self.M_gluing_dim2=M1 + + e4=Fp2(weil_pairing_pari(T1,T2,4)) + + self.e4=e4 + + N_dim2=base_change_theta_dim2(M10,e4) + #N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1) + + # Gluing base change in dimension 4 + mua2=-M1[3,1] + M2=gluing_base_change_matrix_dim2_dim4(a1,a2,m,mua2) + + self.M_gluing_dim4=M2 + + self.N_dim4=base_change_theta_dim4(M2,e4) + + # Kernel of the 2**m-isogeny chain in dimension 2 + a1_red=a1%(2**(m+2)) + a2_red=a2%(2**(m+2)) + B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)] + + # Computation of the 2**m-isogeny chain in dimension 2 + self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2) + + # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny) + a1_red=a1%(2**(m+3)) + a2_red=a2%(2**(m+3)) + + a1P1_m=(a1_red)*P1_m + a2P1_m=(a2_red)*P1_m + a1Q1_m=(a1_red)*Q1_m + a2Q1_m=(a2_red)*Q1_m + + OE2=E2(0) + + B_K_dim4=[TuplePoint(a1P1_m,a2P1_m,R2_m,OE2),TuplePoint(a1Q1_m,a2Q1_m,S2_m,OE2), + TuplePoint(-a2P1_m,a1P1_m,OE2,R2_m),TuplePoint(-a2Q1_m,a1Q1_m,OE2,S2_m)] + L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] + + L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)] + + # Product Theta structure on A_m^2 + self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain) + + # Theta structure on A_m^2 after base change + self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) + + # Converting the kernel to the Theta structure domain_base_change + L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)] + L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)] + + # Computing the gluing isogeny in dimension 4 + self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)]) + + # Translates for the evaluation of the gluing isogeny in dimension 4 + self.L_trans=[2*B_K_dim4[k] for k in range(2)] + self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) + + self._codomain=self._gluing_isogeny_dim4._codomain + + def evaluate(self,P): + if not isinstance(P, TuplePoint): + raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2") + + # Translating P + L_P_trans=[P+T for T in self.L_trans] + + # dim4 --> dim2 x dim2 + eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])] + eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans] + + # evaluating through the dimension 2 isogenies + eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])] + eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans] + + # Product Theta structure and base change + eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) + eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) + + eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] + eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] + + return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) + + def __call__(self,P): + return self.evaluate(P) + +class KaniGluingIsogenyChainDim4Half: + def __init__(self, points_m, a1, a2, q, m, Theta12, M_product_dim2, M_start_dim4, M_gluing_dim4, e4, dual=False,strategy_dim2=None):#points_m,points_4,a1,a2,q,m,precomputed_data=None,dual=False,strategy_dim2=None): + r""" + + INPUT: + - points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3) + such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is + its image by sigma: E1 --> E2. + - points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by + multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1). + - a1, a2, q: integers such that a1**2+a2**2+q=2**e. + - m: 2-adic valuation of a2. + + OUTPUT: Composition of the m+1 first isogenies in the isogeny chained + E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma. + """ + + P1_m, Q1_m, R2_m, S2_m = points_m + + E1=P1_m.curve() + E2=R2_m.curve() + + Fp2=E1.base_field() + + self.M_product_dim2 = M_product_dim2 + + self.Theta12=Theta12 + + self.e4=e4 + + # Gluing base change in dimension 2 + if not dual: + M1=gluing_base_change_matrix_dim2_F1(a1,a2,q) + else: + M1=gluing_base_change_matrix_dim2_F2(a1,a2,q) + + M10=M_product_dim2*M1 + + self.M_gluing_dim2=M1 + + self.e4=e4 + + N_dim2=base_change_theta_dim2(M10,e4) + #N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1) + + # Gluing base change in dimension 4 + + self.M_gluing_dim4 = M_gluing_dim4 + + self.N_dim4 = base_change_theta_dim4(M_gluing_dim4, e4) + + # Kernel of the 2**m-isogeny chain in dimension 2 + a1_red=a1%(2**(m+2)) + a2_red=a2%(2**(m+2)) + if not dual: + B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)] + else: + B_K_dim2=[TuplePoint(2*a1_red*P1_m+2*a2_red*Q1_m,-2*R2_m),TuplePoint(2*a1_red*Q1_m-2*a2_red*P1_m,-2*S2_m)] + + # Computation of the 2**m-isogeny chain in dimension 2 + self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2) + + # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny) + lamb=inverse_mod(q,2**(m+3)) + B_K_dim4=kernel_basis(M_start_dim4,m+1,P1_m,Q1_m,R2_m,lamb*S2_m) + L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]] + + L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)] + + # Product Theta structure on A_m^2 + self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain) + + # Theta structure on A_m^2 after base change + self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4) + + # Converting the kernel to the Theta structure domain_base_change + L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)] + L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)] + + # Computing the gluing isogeny in dimension 4 + self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)]) + + # Translates for the evaluation of the gluing isogeny in dimension 4 + self.L_trans=[2*B_K_dim4[k] for k in range(2)] + self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0) + + self._codomain=self._gluing_isogeny_dim4._codomain + + def evaluate(self,P): + if not isinstance(P, TuplePoint): + raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2") + + # Translating P + L_P_trans=[P+T for T in self.L_trans] + + # dim4 --> dim2 x dim2 + eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])] + eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans] + + # evaluating through the dimension 2 isogenies + eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])] + eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans] + + # Product Theta structure and base change + eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1]) + eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P) + + eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans] + eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans] + + return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind) + + def __call__(self,P): + return self.evaluate(P) + + def dual(self): + domain = self._codomain.hadamard() + codomain_base_change = self.domain_base_change + codomain_product = self.domain_product + N_dim4 = self.N_dim4.inverse() + isogenies_dim2 = self._isogenies_dim2.dual() + splitting_isogeny_dim4 = self._gluing_isogeny_dim4.dual() + + return KaniSplittingIsogenyChainDim4(domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4) + +class KaniSplittingIsogenyChainDim4: + def __init__(self, domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4): + self._domain = domain + self.codomain_base_change = codomain_base_change + self.codomain_product = codomain_product + self.N_dim4 = N_dim4 + self._isogenies_dim2 = isogenies_dim2 + self._splitting_isogeny_dim4 = splitting_isogeny_dim4 + + def evaluate(self,P): + if not isinstance(P, ThetaPointDim4): + raise TypeError("KaniSplittingIsogenyChainDim4 isogeny expects as input a ThetaPointDim4") + + Q = self._splitting_isogeny_dim4(P) + Q = self.codomain_product.base_change_coords(self.N_dim4, Q) + Q1, Q2 = self.codomain_product.to_theta_points(Q) + Q1, Q2 = self._isogenies_dim2._domain(Q1.hadamard()), self._isogenies_dim2._domain(Q2.hadamard()) + + Q1 = self._isogenies_dim2(Q1) + Q2 = self._isogenies_dim2(Q2) + + return TuplePoint(Q1[0],Q2[0],Q1[1],Q2[1]) + + def __call__(self,P): + return self.evaluate(P) diff --git a/theta_lib/isogenies/gluing_isogeny_dim4.py b/theta_lib/isogenies/gluing_isogeny_dim4.py new file mode 100644 index 0000000..cd738c9 --- /dev/null +++ b/theta_lib/isogenies/gluing_isogeny_dim4.py @@ -0,0 +1,200 @@ +from sage.all import * + +from ..theta_structures.Theta_dim4 import ThetaStructureDim4 +from ..theta_structures.theta_helpers_dim4 import hadamard, squared, batch_inversion, multindex_to_index +from .tree import Tree +from .isogeny_dim4 import IsogenyDim4, DualIsogenyDim4 + +def proj_equal(P1, P2): + if len(P1) != len(P2): + return False + for i in range(0, len(P1)): + if P1[i]==0: + if P2[i] != 0: + return False + else: + break + r=P1[i] + s=P2[i] + for i in range(0, len(P1)): + if P1[i]*s != P2[i]*r: + return False + return True + +class GluingIsogenyDim4(IsogenyDim4): + def __init__(self,domain,L_K_8,L_K_8_ind, coerce=None): + r""" + Input: + - domain: a ThetaStructureDim4. + - L_K_8: list of points of 8-torsion in the kernel. + - L_K_8_ind: list of corresponding multindices (i0,i1,i2,i3) of points in L_K_8 + (L_K_8[i]=i0*P0+i1*P1+i2*P2+i3*P3, where (P0,..,P3) is a basis of K_8 (compatible with + the canonical basis of K_2) and L_K_8_ind[i]=(i0,i1,i2,i3)). + """ + + if not isinstance(domain, ThetaStructureDim4): + raise ValueError("Argument domain should be a ThetaStructureDim4 object.") + self._domain = domain + self._precomputation=None + self._coerce=coerce + self._special_compute_codomain(L_K_8,L_K_8_ind) + + #a_i2=squared(self._domain.zero()) + #HB_i2=hadamard(squared(hadamard(self._codomain.zero()))) + #for i in range(16): + #print(HB_i2[i]/a_i2[i]) + + def _special_compute_codomain(self,L_K_8,L_K_8_ind): + r""" + Input: + - L_K_8: list of points of 8-torsion in the kernel. + - L_K_8_ind: list of corresponding multindices (i0,i1,i2,i3) of points in L_K_8 + (L_K_8[i]=i0*P0+i1*P1+i2*P2+i3*P3, where (P0,..,P3) is a basis of K_8 (compatible with + the canonical basis of K_2) and L_K_8_ind[i]=(i0,i1,i2,i3)). + + Output: + - codomain of the isogeny. + Also initializes self._precomputation, containing the inverse of theta-constants. + """ + HSK_8=[hadamard(squared(P.coords())) for P in L_K_8] + + # Choice of reference index j_0<->chi_0 corresponding to a non-vanishing theta-constant. + found_tree=False + j_0=0 + while not found_tree: + found_k0=False + for k in range(len(L_K_8)): + if HSK_8[k][j_0]!=0: + k_0=k + found_k0=True + break + if not found_k0: + j_0+=1 + else: + j0pk0=j_0^multindex_to_index(L_K_8_ind[k_0]) + # List of tuples of indices (index chi of the denominator: HS(f(P_k))_chi, + #index chi.chi_k of the numerator: HS(f(P_k))_chi.chi_k, index k). + L_ratios_ind=[(j_0,j0pk0,k_0)] + L_covered_ind=[j_0,j0pk0] + + # Tree containing the the theta-null points indices as nodes and the L_ratios_ind reference indices as edges. + tree_ratios=Tree(j_0) + tree_ratios.add_child(Tree(j0pk0),0) + + # Filling in the tree + tree_filled=False + while not tree_filled: + found_j=False + for j in L_covered_ind: + for k in range(len(L_K_8)): + jpk=j^multindex_to_index(L_K_8_ind[k]) + if jpk not in L_covered_ind and HSK_8[k][j]!=0: + L_covered_ind.append(jpk) + L_ratios_ind.append((j,jpk,k)) + tree_j=tree_ratios.look_node(j) + tree_j.add_child(Tree(jpk),len(L_ratios_ind)-1) + found_j=True + #break + #if found_j: + #break + if not found_j or len(L_covered_ind)==16: + tree_filled=True + if len(L_covered_ind)!=16: + j_0+=1 + else: + found_tree=True + + L_denom=[HSK_8[t[2]][t[0]] for t in L_ratios_ind] + L_denom_inv=batch_inversion(L_denom) + L_num=[HSK_8[t[2]][t[1]] for t in L_ratios_ind] + L_ratios=[L_num[i]*L_denom_inv[i] for i in range(15)] + + L_coords_ind=tree_ratios.edge_product(L_ratios) + + O_coords=[ZZ(0) for i in range(16)] + for t in L_coords_ind: + if self._coerce: + O_coords[t[1]]=self._coerce(t[0]) + else: + O_coords[t[1]]=t[0] + + # Precomputation + # TODO: optimize inversions and give precomputation to the codomain _arithmetic_precomputation + L_prec=[] + L_prec_ind=[] + for i in range(16): + if O_coords[i]!=0: + L_prec.append(O_coords[i]) + L_prec_ind.append(i) + L_prec_inv=batch_inversion(L_prec) + precomputation=[None for i in range(16)] + for i in range(len(L_prec)): + precomputation[L_prec_ind[i]]=L_prec_inv[i] + + self._precomputation=precomputation + + for k in range(len(L_K_8)): + for j in range(16): + jpk=j^multindex_to_index(L_K_8_ind[k]) + assert HSK_8[k][j]*O_coords[jpk]==HSK_8[k][jpk]*O_coords[j] + + assert proj_equal(squared(self._domain._null_point.coords()), hadamard(squared(O_coords))) + + self._codomain=ThetaStructureDim4(hadamard(O_coords),null_point_dual=O_coords) + + def special_image(self,P,L_trans,L_trans_ind): + r"""Used when we cannot evaluate the isogeny self because the codomain has zero + dual theta constants. + + Input: + - P: ThetaPointDim4 of the domain. + - L_trans: list of translates of P+T of P by points of 4-torsion T above the kernel. + - L_trans_ind: list of indices of the translation 4-torsion points T. + If L_trans[i]=\sum i_j*B_K4[j] then L_trans_ind[j]=\sum 2**j*i_j. + + Output: + - the image of P by the isogeny self. + """ + HS_P=hadamard(squared(P.coords())) + HSL_trans=[hadamard(squared(Q.coords())) for Q in L_trans] + O_coords=self._codomain.null_point_dual() + + # L_lambda_inv: List of inverses of lambda_i such that: + # HS(P+Ti)=(lambda_i*U_{chi.chi_i,0}(f(P))*U_{chi,0}(0))_chi. + L_lambda_inv_num=[] + L_lambda_inv_denom=[] + + for k in range(len(L_trans)): + for j in range(16): + jpk=j^L_trans_ind[k] + if HSL_trans[k][j]!=0 and O_coords[jpk]!=0: + L_lambda_inv_num.append(HS_P[jpk]*O_coords[j]) + L_lambda_inv_denom.append(HSL_trans[k][j]*O_coords[jpk]) + break + L_lambda_inv_denom=batch_inversion(L_lambda_inv_denom) + L_lambda_inv=[L_lambda_inv_num[i]*L_lambda_inv_denom[i] for i in range(len(L_trans))] + + for k in range(len(L_trans)): + for j in range(16): + jpk=j^L_trans_ind[k] + assert HS_P[jpk]*O_coords[j]==L_lambda_inv[k]*HSL_trans[k][j]*O_coords[jpk] + + U_fP=[] + for i in range(16): + if self._precomputation[i]!=None: + U_fP.append(self._precomputation[i]*HS_P[i]) + else: + for k in range(len(L_trans)): + ipk=i^L_trans_ind[k] + if self._precomputation[ipk]!=None: + U_fP.append(self._precomputation[ipk]*HSL_trans[k][ipk]*L_lambda_inv[k]) + break + + fP=hadamard(U_fP) + if self._coerce: + fP=[self._coerce(x) for x in fP] + + return self._codomain(fP) + + def dual(self): + return DualIsogenyDim4(self._codomain,self._domain, hadamard=False) diff --git a/theta_lib/isogenies/isogeny_chain_dim4.py b/theta_lib/isogenies/isogeny_chain_dim4.py new file mode 100644 index 0000000..8c0b78e --- /dev/null +++ b/theta_lib/isogenies/isogeny_chain_dim4.py @@ -0,0 +1,114 @@ +from sage.all import * +from ..utilities.strategy import precompute_strategy_with_first_eval, precompute_strategy_with_first_eval_and_splitting +from .isogeny_dim4 import IsogenyDim4 + + +class IsogenyChainDim4: + def __init__(self, B_K, first_isogenies, e, m, splitting=True, strategy = None): + self.e=e + self.m=m + + if strategy == None: + strategy = self.get_strategy(splitting) + self.strategy = strategy + + self._isogenies=self.isogeny_chain(B_K, first_isogenies) + + + def get_strategy(self,splitting): + if splitting: + return precompute_strategy_with_first_eval_and_splitting(self.e,self.m,M=1,S=0.8,I=100) + else: + return precompute_strategy_with_first_eval(self.e,self.m,M=1,S=0.8,I=100) + + def isogeny_chain(self, B_K, first_isogenies): + """ + Compute the isogeny chain and store intermediate isogenies for evaluation + """ + # Store chain of (2,2)-isogenies + isogeny_chain = [] + + # Bookkeeping for optimal strategy + strat_idx = 0 + level = [0] + ker = B_K + kernel_elements = [ker] + + # Length of the chain + n=self.e-self.m + + for k in range(n): + prev = sum(level) + ker = kernel_elements[-1] + + while prev != (n - 1 - k): + level.append(self.strategy[strat_idx]) + prev += self.strategy[strat_idx] + + # Perform the doublings and update kernel elements + # Prevent the last unnecessary doublings for first isogeny computation + if k>0 or prev!=n-1: + ker = [ker[i].double_iter(self.strategy[strat_idx]) for i in range(4)] + kernel_elements.append(ker) + + # Update bookkeeping variable + strat_idx += 1 + + # Compute the codomain from the 8-torsion + if k==0: + phi = first_isogenies + else: + phi = IsogenyDim4(Th,ker) + + # Update the chain of isogenies + Th = phi._codomain + # print(parent(Th.null_point().coords()[0])) + isogeny_chain.append(phi) + + # Remove elements from list + if k>0: + kernel_elements.pop() + level.pop() + + # Push through points for the next step + kernel_elements = [[phi(T) for T in kernel] for kernel in kernel_elements] + # print([[parent(T.coords()[0]) for T in kernel] for kernel in kernel_elements]) + + return isogeny_chain + + def evaluate_isogeny(self,P): + Q=P + for f in self._isogenies: + Q=f(Q) + return Q + + def __call__(self,P): + return self.evaluate_isogeny(P) + + def dual(self): + n=len(self._isogenies) + isogenies=[] + for i in range(n): + isogenies.append(self._isogenies[n-1-i].dual()) + return DualIsogenyChainDim4(isogenies) + + +class DualIsogenyChainDim4: + def __init__(self,isogenies): + self._isogenies=isogenies + + def evaluate_isogeny(self,P): + n=len(self._isogenies) + Q=P + for j in range(n): + Q=self._isogenies[j](Q) + return Q + + def __call__(self,P): + return self.evaluate_isogeny(P) + + + + + + diff --git a/theta_lib/isogenies/isogeny_dim4.py b/theta_lib/isogenies/isogeny_dim4.py new file mode 100644 index 0000000..2f483bf --- /dev/null +++ b/theta_lib/isogenies/isogeny_dim4.py @@ -0,0 +1,162 @@ +from sage.all import * + +from ..theta_structures.Theta_dim4 import ThetaStructureDim4 +from ..theta_structures.theta_helpers_dim4 import hadamard, squared, batch_inversion +from .tree import Tree + +class IsogenyDim4: + def __init__(self,domain,K_8,codomain=None,precomputation=None): + r""" + Input: + - domain: a ThetaStructureDim4. + - K_8: a list of 4 points of 8-torision (such that 4*K_8 is a kernel basis), used to compute the codomain. + - codomain: a ThetaStructureDim4 (for the codomain, used only when K_8 is None). + - precomputation: list of inverse of dual theta constants of the codomain, used to compute the image. + """ + + if not isinstance(domain, ThetaStructureDim4): + raise ValueError("Argument domain should be a ThetaStructureDim4 object.") + self._domain = domain + self._precomputation=None + if K_8!=None: + self._compute_codomain(K_8) + else: + self._codomain=codomain + self._precomputation=precomputation + + def _compute_codomain(self,K_8): + r""" + Input: + - K_8: a list of 4 points of 8-torision (such that 4*K_8 is a kernel basis). + + Output: + - codomain of the isogeny. + Also initializes self._precomputation, containing the inverse of theta-constants. + """ + HSK_8=[hadamard(squared(P.coords())) for P in K_8] + + # Choice of reference index j_0<->chi_0 corresponding to a non-vanishing theta-constant. + found_tree=False + j_0=0 + while not found_tree: + found_k0=False + for k in range(4): + if j_0>15: + raise NotImplementedError("The codomain of this 2-isogeny could not be computed.\nWe may have encountered a product of abelian varieties\nsomewhere unexpected along the chain.\nThis is exceptionnal and should not happen in larger characteristic.") + if HSK_8[k][j_0]!=0: + k_0=k + found_k0=True + break + if not found_k0: + j_0+=1 + else: + j0pk0=j_0^(2**k_0) + # List of tuples of indices (index chi of the denominator: HS(f(P_k))_chi, + #index chi.chi_k of the numerator: HS(f(P_k))_chi.chi_k, index k). + L_ratios_ind=[(j_0,j0pk0,k_0)] + L_covered_ind=[j_0,j0pk0] + + # Tree containing the the theta-null points indices as nodes and the L_ratios_ind reference indices as edges. + tree_ratios=Tree(j_0) + tree_ratios.add_child(Tree(j0pk0),k_0) + + # Filling in the tree + tree_filled=False + while not tree_filled: + found_j=False + for j in L_covered_ind: + for k in range(4): + jpk=j^(2**k) + if jpk not in L_covered_ind and HSK_8[k][j]!=0: + L_covered_ind.append(jpk) + L_ratios_ind.append((j,jpk,k)) + tree_j=tree_ratios.look_node(j) + tree_j.add_child(Tree(jpk),len(L_ratios_ind)-1) + found_j=True + break + if found_j: + break + if not found_j or len(L_covered_ind)==16: + tree_filled=True + if len(L_covered_ind)!=16: + j_0+=1 + else: + found_tree=True + + L_denom=[HSK_8[t[2]][t[0]] for t in L_ratios_ind] + L_denom_inv=batch_inversion(L_denom) + L_num=[HSK_8[t[2]][t[1]] for t in L_ratios_ind] + L_ratios=[L_num[i]*L_denom_inv[i] for i in range(15)] + + L_coords_ind=tree_ratios.edge_product(L_ratios) + + O_coords=[ZZ(0) for i in range(16)] + for t in L_coords_ind: + O_coords[t[1]]=t[0] + + # Precomputation + # TODO: optimize inversions + L_prec=[] + L_prec_ind=[] + for i in range(16): + if O_coords[i]!=0: + L_prec.append(O_coords[i]) + L_prec_ind.append(i) + L_prec_inv=batch_inversion(L_prec) + precomputation=[None for i in range(16)] + for i in range(len(L_prec)): + precomputation[L_prec_ind[i]]=L_prec_inv[i] + + self._precomputation=precomputation + # Assumes there is no zero theta constant. Otherwise, squared(precomputation) will raise an error (None**2 does not exist) + self._codomain=ThetaStructureDim4(hadamard(O_coords),null_point_dual=O_coords) + + def codomain(self): + return self._codomain + + def domain(self): + return self._domain + + def image(self,P): + HS_P=list(hadamard(squared(P.coords()))) + + for i in range(16): + HS_P[i] *=self._precomputation[i] + + return self._codomain(hadamard(HS_P)) + + def dual(self): + return DualIsogenyDim4(self._codomain,self._domain, hadamard=True) + + def __call__(self,P): + return self.image(P) + + +class DualIsogenyDim4: + def __init__(self,domain,codomain,hadamard=True): + # domain and codomain are respectively the domain and codomain of \tilde{f}: domain-->codomain, + # so respectively the codomain and domain of f: codomain-->domain. + # By convention, domain input is given in usual coordinates (ker(\tilde{f})=K_2). + # codomain is in usual coordinates if hadamard, in dual coordinates otherwise. + self._domain=domain.hadamard() + self._hadamard=hadamard + if hadamard: + self._codomain=codomain.hadamard() + self._precomputation=batch_inversion(codomain.zero().coords()) + else: + self._codomain=codomain + self._precomputation=batch_inversion(codomain.zero().coords()) + + def image(self,P): + # When ker(f)=K_2, ker(\tilde{f})=K_1 so ker(\tilde{f})=K_2 after hadamard transformation of the + # new domain (ex codomain) + HS_P=list(hadamard(squared(P.coords()))) + for i in range(16): + HS_P[i] *=self._precomputation[i] + if self._hadamard: + return self._codomain(hadamard(HS_P)) + else: + return self._codomain(HS_P) + + def __call__(self,P): + return self.image(P) diff --git a/theta_lib/isogenies/tree.py b/theta_lib/isogenies/tree.py new file mode 100644 index 0000000..a6e3da3 --- /dev/null +++ b/theta_lib/isogenies/tree.py @@ -0,0 +1,28 @@ +from sage.all import * + +class Tree: + def __init__(self,node): + self._node=node + self._edges=[] + self._children=[] + + def add_child(self,child,edge): + self._children.append(child) + self._edges.append(edge) + + def look_node(self,node): + if self._node==node: + return self + elif len(self._children)>0: + for child in self._children: + t_node=child.look_node(node) + if t_node!=None: + return t_node + + def edge_product(self,L_factors,factor_node=ZZ(1)): + n=len(self._children) + L_prod=[(factor_node,self._node)] + for i in range(n): + L_prod+=self._children[i].edge_product(L_factors,factor_node*L_factors[self._edges[i]]) + return L_prod + |