Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py
blob: 282219cfd40238192b69dbde5f5945e5661d3aa6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
from sage.all import *
from ..utilities.discrete_log import weil_pairing_pari
from ..basis_change.canonical_basis_dim1 import make_canonical
from ..basis_change.kani_base_change import (
    fixed_deg_gluing_matrix_Phi1,
    fixed_deg_gluing_matrix_Phi2,
    fixed_deg_gluing_matrix_dim4,
    clapoti_cob_matrix_dim2,
    clapoti_cob_matrix_dim2_dim4,
    gluing_base_change_matrix_dim2,
    gluing_base_change_matrix_dim2_dim4,
    gluing_base_change_matrix_dim2_F1,
    gluing_base_change_matrix_dim2_F2,
    kernel_basis,
)
from ..basis_change.base_change_dim2 import base_change_theta_dim2
from ..basis_change.base_change_dim4 import base_change_theta_dim4
from ..theta_structures.Theta_dim1 import ThetaStructureDim1
from ..theta_structures.Theta_dim2 import ProductThetaStructureDim2
from ..theta_structures.Tuple_point import TuplePoint
from ..theta_structures.Theta_dim4 import ProductThetaStructureDim2To4, ThetaPointDim4
from ..isogenies_dim2.isogeny_chain_dim2 import IsogenyChainDim2
from .gluing_isogeny_dim4 import GluingIsogenyDim4

class KaniFixedDegDim2Gluing:
	def __init__(self,P_mp3,Q_mp3,a,b,c,d,u,f,m,strategy_dim2=None):
		r"""
		INPUT:
		- P_mp3, Q_mp3: basis of E[2^(m+3)] such that pi(P_mp3)=P_mp3 and pi(Q_mp3)=-Q_mp3.
		- a,b,c,d,u,f: integers such that a**2+c**2+p*(b**2+d**2)=u*(2**f-u), where p is
		ths characteristic of the base field.
		- m: integer such that m=min(v_2(a-b),v_2(a+b)).

		OUTPUT: Gluing isogeny chain F_{m+1}\circ...\circ F_1 containing the first m+1 steps of
		the isogeny F: E^4 --> A*A' representing a u-isogeny in dimension 2.
		"""

		P_mp2 = 2*P_mp3
		Q_mp2 = 2*Q_mp3
		P_4 = 2**m*P_mp2
		Q_4 = 2**m*Q_mp2

		E = P_mp3.curve()

		# Canonical basis with S_4=(1,0)
		_, _, R_4, S_4, M_dim1 = make_canonical(P_4,Q_4,4,preserve_pairing=True)

		Z4 = Integers(4)
		M0 = matrix(Z4,[[M_dim1[0,0],0,M_dim1[0,1],0],
			[0,M_dim1[0,0],0,M_dim1[0,1]],
			[M_dim1[1,0],0,M_dim1[1,1],0],
			[0,M_dim1[1,0],0,M_dim1[1,1]]])

		# Theta structures
		Theta_E = ThetaStructureDim1(E,R_4,S_4)
		Theta_EE = ProductThetaStructureDim2(Theta_E,Theta_E)

		# Gluing change of basis in dimension 2
		M1 = fixed_deg_gluing_matrix_Phi1(u,a,b,c,d)
		M2 = fixed_deg_gluing_matrix_Phi2(u,a,b,c,d)

		M10 = M0*M1
		M20 = M0*M2

		Fp2 = E.base_field()
		e4 = Fp2(weil_pairing_pari(R_4,S_4,4))

		N_Phi1 = base_change_theta_dim2(M10,e4)
		N_Phi2 = base_change_theta_dim2(M20,e4)

		# Gluing change of basis dimension 2 * dimension 2 --> dimension 4
		M_dim4 = fixed_deg_gluing_matrix_dim4(u,a,b,c,d,m)

		self.N_dim4 = base_change_theta_dim4(M_dim4,e4)

		# Kernel of Phi1 : E^2 --> A_m1 and Phi2 : E^2 --> A_m2
		two_mp2 = 2**(m+2)
		two_mp3 = 2*two_mp2
		mu = inverse_mod(u,two_mp3)
		
		B_K_Phi1 = [TuplePoint((u%two_mp2)*P_mp2,((c+d)%two_mp2)*P_mp2),
		TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,((c-d)%two_mp2)*Q_mp2)]

		B_K_Phi2 = [TuplePoint((u%two_mp2)*P_mp2,((d-c)%two_mp2)*P_mp2),
		TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,(-(c+d)%two_mp2)*Q_mp2)]

		# Computation of the 2**m-isogenies Phi1 and Phi2
		self._Phi1=IsogenyChainDim2(B_K_Phi1,Theta_EE,N_Phi1,m,strategy_dim2)
		self._Phi2=IsogenyChainDim2(B_K_Phi2,Theta_EE,N_Phi2,m,strategy_dim2)

		# Kernel of the (m+1)-th isogeny in dimension 4 F_{m+1}: A_m1*A_m2 --> B (gluing isogeny)

		B_K_dim4 =[TuplePoint((u%two_mp3)*P_mp3,E(0),((a+b)%two_mp3)*P_mp3,((c+d)%two_mp3)*P_mp3),
		TuplePoint(E(0),(u%two_mp3)*P_mp3,((d-c)%two_mp3)*P_mp3,((a-b)%two_mp3)*P_mp3),
		TuplePoint(((u-2**f)%two_mp3)*Q_mp3,E(0),((a-b)%two_mp3)*Q_mp3,((c-d)%two_mp3)*Q_mp3),
		TuplePoint(E(0),((u-2**f)%two_mp3)*Q_mp3,((-c-d)%two_mp3)*Q_mp3,((a+b)%two_mp3)*Q_mp3)]

		L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]

		L_K_dim4=[[self._Phi1(TuplePoint(T[0],T[3])),self._Phi2(TuplePoint(T[1],T[2]))] for T in L_K_dim4]

		# Product Theta structure on A_m1*A_m2
		self.domain_product=ProductThetaStructureDim2To4(self._Phi1._codomain,self._Phi2._codomain)
		
		# Theta structure on A_m1*A_m2 after change of theta coordinates
		self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
		
		# Converting the kernel to the Theta structure domain_base_change
		L_K_dim4=[self.domain_product.product_theta_point(T[0],T[1]) for T in L_K_dim4]
		L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,T) for T in L_K_dim4]

		# Computing the gluing isogeny in dimension 4
		self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)])

		# Translates for the evaluation of the gluing isogeny in dimension 4
		self.L_trans=[2*B_K_dim4[k] for k in range(2)]
		self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)

		self._codomain=self._gluing_isogeny_dim4._codomain

	def evaluate(self,P):
		if not isinstance(P, TuplePoint):
			raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E^4")

		# Translating P
		L_P_trans=[P+T for T in self.L_trans]
		
		# dim4 --> dim2 x dim2
		eval_P=[TuplePoint(P[0],P[3]),TuplePoint(P[1],P[2])]
		eval_L_P_trans=[[TuplePoint(Q[0],Q[3]),TuplePoint(Q[1],Q[2])] for Q in L_P_trans]

		# evaluating through the dimension 2 isogenies
		eval_P=[self._Phi1(eval_P[0]),self._Phi2(eval_P[1])]
		eval_L_P_trans=[[self._Phi1(Q[0]),self._Phi2(Q[1])] for Q in eval_L_P_trans]

		# Product Theta structure and base change
		eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
		eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)

		eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
		eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]

		return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)

	def __call__(self,P):
		return self.evaluate(P)


class KaniClapotiGluing:
	def __init__(self,points_mp3,points_mp2,points_4,integers,strategy_dim2=None,coerce=None):
		self._coerce=coerce
		Pu_mp3,Qu_mp3,Pv_mp3,Qv_mp3 = points_mp3
		Pu_mp2,Qu_mp2,Pv_mp2,Qv_mp2 = points_mp2
		Pu_4,Qu_4,Pv_4,Qv_4 = points_4
		gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers

		Eu=Pu_4.curve()
		Ev=Pv_4.curve()

		lamb_u = inverse_mod(ZZ(gu),4)
		lamb_v = inverse_mod(ZZ(gv*Nbk*Nck),4)


		# 4-torsion canonical change of basis in Eu and Ev (Su=(1,0), Sv=(1,0))
		_,_,Ru,Su,Mu=make_canonical(Pu_4,lamb_u*Qu_4,4,preserve_pairing=True)
		_,_,Rv,Sv,Mv=make_canonical(Pv_4,lamb_v*Qv_4,4,preserve_pairing=True)

		Z4 = Integers(4)
		M0=matrix(Z4,[[Mu[0,0],0,Mu[1,0],0],
			[0,Mv[0,0],0,Mv[1,0]],
			[Mu[0,1],0,Mu[1,1],0],
			[0,Mv[0,1],0,Mv[1,1]]])

		self.M_product_dim2=M0

		# Theta structures in dimension 1 and 2
		Theta_u=ThetaStructureDim1(Eu,Ru,Su)
		Theta_v=ThetaStructureDim1(Ev,Rv,Sv)

		Theta_uv=ProductThetaStructureDim2(Theta_u,Theta_v)

		# Gluing change of basis in dimension 2
		M1 = clapoti_cob_matrix_dim2(integers)
		M10 = M0*M1

		Fp2 = Eu.base_field()
		e4 = Fp2(weil_pairing_pari(Ru,Su,4))
		self.e4 = e4

		N_dim2 = base_change_theta_dim2(M10,e4)

		# Gluing change of basis dimension 2 * dimension 2 --> dimension 4
		M2 = clapoti_cob_matrix_dim2_dim4(integers)

		self.N_dim4 = base_change_theta_dim4(M2,e4)

		# Kernel of the 2**m-isogeny chain in dimension 2
		two_mp2=2**(m+2)
		two_mp3=2*two_mp2
		u=ZZ(gu*(xu**2+yu**2))
		mu=inverse_mod(u,two_mp2)
		suv=ZZ(xu*xv+yu*yv)
		duv=ZZ(xv*yu-xu*yv)
		uNbk=(u*Nbk)%two_mp2
		gusuv=(gu*suv)%two_mp2
		xK2=(uNbk+gu*gv*mu*Nck*duv**2)%two_mp2
		B_K_dim2 = [TuplePoint(uNbk*Pu_mp2,gusuv*Pv_mp2),TuplePoint(xK2*Qu_mp2,gusuv*Qv_mp2)]

		# Computation of the 2**m-isogeny chain in dimension 2
		self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta_uv,N_dim2,m,strategy_dim2)

		# Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny)
		xuNbk = (xu*Nbk)%two_mp3
		yuNbk = (yu*Nbk)%two_mp3
		inv_Nbk = inverse_mod(Nbk,two_mp3)
		lambxu = ((1-2**e)*xu)%two_mp3 # extreme case m=e-2, 2^e = 2^(m+2) so 2^e/(u*Nbk) = 2^e mod 2^(m+3).
		lambyu = ((1-2**e)*yu)%two_mp3
		xv_Nbk = (xv*inv_Nbk)%two_mp3
		yv_Nbk = (yv*inv_Nbk)%two_mp3

		B_K_dim4 = [TuplePoint(xuNbk*Pu_mp3,yuNbk*Pu_mp3,xv*Pv_mp3,yv*Pv_mp3),
		TuplePoint(-yuNbk*Pu_mp3,xuNbk*Pu_mp3,-yv*Pv_mp3,xv*Pv_mp3),
		TuplePoint(lambxu*Qu_mp3,lambyu*Qu_mp3,xv_Nbk*Qv_mp3,yv_Nbk*Qv_mp3),
		TuplePoint(-lambyu*Qu_mp3,lambxu*Qu_mp3,-yv_Nbk*Qv_mp3,xv_Nbk*Qv_mp3)]

		L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]

		L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)]

		# Product Theta structure on A_m^2
		self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain)
		
		# Theta structure on A_m^2 after change of theta coordinates
		self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
		
		# Converting the kernel to the Theta structure domain_base_change
		L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)]
		L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)]

		# Computing the gluing isogeny in dimension 4
		self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)], coerce=self._coerce)

		# Translates for the evaluation of the gluing isogeny in dimension 4
		self.L_trans=[2*B_K_dim4[k] for k in range(2)]
		self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)

		self._codomain=self._gluing_isogeny_dim4._codomain

	def evaluate(self,P):
		if not isinstance(P, TuplePoint):
			raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product Eu^2 x Ev^2")

		# Translating P
		L_P_trans=[P+T for T in self.L_trans]
		
		# dim4 --> dim2 x dim2
		eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])]
		eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans]

		# evaluating through the dimension 2 isogenies
		eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])]
		eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans]

		# Product Theta structure and base change
		eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
		eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)

		eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
		eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]

		return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)

	def __call__(self,P):
		return self.evaluate(P)

		
		
class KaniGluingIsogenyChainDim4:
	def __init__(self,points_m,points_4,a1,a2,q,m,strategy_dim2=None):
		r"""

		INPUT: 
		- points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3)
		such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is
		its image by sigma: E1 --> E2.
		- points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by
		multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1).
		- a1, a2, q: integers such that a1**2+a2**2+q=2**e.
		- m: 2-adic valuation of a2.

		OUTPUT: Composition of the m+1 first isogenies in the isogeny chained
		E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma.
		"""

		P1_m, Q1_m, R2_m, S2_m = points_m
		P1_4, Q1_4, R2_4, S2_4 = points_4

		E1=P1_m.curve()
		E2=R2_m.curve()

		Fp2=E1.base_field()

		lamb=inverse_mod(q,4)

		_,_,T1,T2,MT=make_canonical(P1_4,Q1_4,4,preserve_pairing=True)
		_,_,U1,U2,MU=make_canonical(R2_4,lamb*S2_4,4,preserve_pairing=True)

		Z4=Integers(4)
		M0=matrix(Z4,[[MT[0,0],0,MT[1,0],0],
			[0,MU[0,0],0,MU[1,0]],
			[MT[0,1],0,MT[1,1],0],
			[0,MU[0,1],0,MU[1,1]]])

		self.M_product_dim2=M0

		# Theta structures in dimension 1 and 2
		Theta1=ThetaStructureDim1(E1,T1,T2)
		Theta2=ThetaStructureDim1(E2,U1,U2)

		Theta12=ProductThetaStructureDim2(Theta1,Theta2)

		self.Theta1=Theta1
		self.Theta2=Theta2
		self.Theta12=Theta12

		# Gluing base change in dimension 2
		M1=gluing_base_change_matrix_dim2(a1,a2,q)
		M10=M0*M1

		self.M_gluing_dim2=M1

		e4=Fp2(weil_pairing_pari(T1,T2,4))

		self.e4=e4

		N_dim2=base_change_theta_dim2(M10,e4)
		#N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1)

		# Gluing base change in dimension 4
		mua2=-M1[3,1]
		M2=gluing_base_change_matrix_dim2_dim4(a1,a2,m,mua2)

		self.M_gluing_dim4=M2

		self.N_dim4=base_change_theta_dim4(M2,e4)

		# Kernel of the 2**m-isogeny chain in dimension 2
		a1_red=a1%(2**(m+2))
		a2_red=a2%(2**(m+2))
		B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)]

		# Computation of the 2**m-isogeny chain in dimension 2
		self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2)

		# Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny)
		a1_red=a1%(2**(m+3))
		a2_red=a2%(2**(m+3))
		
		a1P1_m=(a1_red)*P1_m
		a2P1_m=(a2_red)*P1_m
		a1Q1_m=(a1_red)*Q1_m
		a2Q1_m=(a2_red)*Q1_m

		OE2=E2(0)

		B_K_dim4=[TuplePoint(a1P1_m,a2P1_m,R2_m,OE2),TuplePoint(a1Q1_m,a2Q1_m,S2_m,OE2),
				TuplePoint(-a2P1_m,a1P1_m,OE2,R2_m),TuplePoint(-a2Q1_m,a1Q1_m,OE2,S2_m)]
		L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]

		L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)]

		# Product Theta structure on A_m^2
		self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain)
		
		# Theta structure on A_m^2 after base change
		self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
		
		# Converting the kernel to the Theta structure domain_base_change
		L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)]
		L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)]

		# Computing the gluing isogeny in dimension 4
		self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)])

		# Translates for the evaluation of the gluing isogeny in dimension 4
		self.L_trans=[2*B_K_dim4[k] for k in range(2)]
		self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)

		self._codomain=self._gluing_isogeny_dim4._codomain

	def evaluate(self,P):
		if not isinstance(P, TuplePoint):
			raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2")

		# Translating P
		L_P_trans=[P+T for T in self.L_trans]
		
		# dim4 --> dim2 x dim2
		eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])]
		eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans]

		# evaluating through the dimension 2 isogenies
		eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])]
		eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans]

		# Product Theta structure and base change
		eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
		eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)

		eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
		eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]

		return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)

	def __call__(self,P):
		return self.evaluate(P)

class KaniGluingIsogenyChainDim4Half:
	def __init__(self, points_m, a1, a2, q, m, Theta12, M_product_dim2, M_start_dim4, M_gluing_dim4, e4, dual=False,strategy_dim2=None):#points_m,points_4,a1,a2,q,m,precomputed_data=None,dual=False,strategy_dim2=None):
		r"""

		INPUT: 
		- points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3)
		such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is
		its image by sigma: E1 --> E2.
		- points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by
		multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1).
		- a1, a2, q: integers such that a1**2+a2**2+q=2**e.
		- m: 2-adic valuation of a2.

		OUTPUT: Composition of the m+1 first isogenies in the isogeny chained
		E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma.
		"""

		P1_m, Q1_m, R2_m, S2_m = points_m

		E1=P1_m.curve()
		E2=R2_m.curve()

		Fp2=E1.base_field()

		self.M_product_dim2 = M_product_dim2

		self.Theta12=Theta12

		self.e4=e4

		# Gluing base change in dimension 2
		if not dual:
			M1=gluing_base_change_matrix_dim2_F1(a1,a2,q)
		else:
			M1=gluing_base_change_matrix_dim2_F2(a1,a2,q)
		
		M10=M_product_dim2*M1

		self.M_gluing_dim2=M1

		self.e4=e4

		N_dim2=base_change_theta_dim2(M10,e4)
		#N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1)

		# Gluing base change in dimension 4

		self.M_gluing_dim4 = M_gluing_dim4

		self.N_dim4 = base_change_theta_dim4(M_gluing_dim4, e4)

		# Kernel of the 2**m-isogeny chain in dimension 2
		a1_red=a1%(2**(m+2))
		a2_red=a2%(2**(m+2))
		if not dual:
			B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)]
		else:
			B_K_dim2=[TuplePoint(2*a1_red*P1_m+2*a2_red*Q1_m,-2*R2_m),TuplePoint(2*a1_red*Q1_m-2*a2_red*P1_m,-2*S2_m)]

		# Computation of the 2**m-isogeny chain in dimension 2
		self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2)

		# Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny)
		lamb=inverse_mod(q,2**(m+3))
		B_K_dim4=kernel_basis(M_start_dim4,m+1,P1_m,Q1_m,R2_m,lamb*S2_m)
		L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]

		L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)]

		# Product Theta structure on A_m^2
		self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain)
		
		# Theta structure on A_m^2 after base change
		self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
		
		# Converting the kernel to the Theta structure domain_base_change
		L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)]
		L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)]

		# Computing the gluing isogeny in dimension 4
		self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)])

		# Translates for the evaluation of the gluing isogeny in dimension 4
		self.L_trans=[2*B_K_dim4[k] for k in range(2)]
		self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)

		self._codomain=self._gluing_isogeny_dim4._codomain

	def evaluate(self,P):
		if not isinstance(P, TuplePoint):
			raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2")

		# Translating P
		L_P_trans=[P+T for T in self.L_trans]
		
		# dim4 --> dim2 x dim2
		eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])]
		eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans]

		# evaluating through the dimension 2 isogenies
		eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])]
		eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans]

		# Product Theta structure and base change
		eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
		eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)

		eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
		eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]

		return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)

	def __call__(self,P):
		return self.evaluate(P)

	def dual(self):
		domain = self._codomain.hadamard()
		codomain_base_change = self.domain_base_change
		codomain_product = self.domain_product
		N_dim4 = self.N_dim4.inverse()
		isogenies_dim2 = self._isogenies_dim2.dual()
		splitting_isogeny_dim4 = self._gluing_isogeny_dim4.dual()

		return KaniSplittingIsogenyChainDim4(domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4)

class KaniSplittingIsogenyChainDim4:
	def __init__(self, domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4):
		self._domain = domain
		self.codomain_base_change = codomain_base_change
		self.codomain_product = codomain_product
		self.N_dim4 = N_dim4
		self._isogenies_dim2 = isogenies_dim2
		self._splitting_isogeny_dim4 = splitting_isogeny_dim4

	def evaluate(self,P):
		if not isinstance(P, ThetaPointDim4):
			raise TypeError("KaniSplittingIsogenyChainDim4 isogeny expects as input a ThetaPointDim4")

		Q = self._splitting_isogeny_dim4(P)
		Q = self.codomain_product.base_change_coords(self.N_dim4, Q)
		Q1, Q2 = self.codomain_product.to_theta_points(Q)
		Q1, Q2 = self._isogenies_dim2._domain(Q1.hadamard()), self._isogenies_dim2._domain(Q2.hadamard()) 

		Q1 = self._isogenies_dim2(Q1)
		Q2 = self._isogenies_dim2(Q2)

		return TuplePoint(Q1[0],Q2[0],Q1[1],Q2[1])

	def __call__(self,P):
		return self.evaluate(P)