Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/isogenies
diff options
context:
space:
mode:
Diffstat (limited to 'theta_lib/isogenies')
-rw-r--r--theta_lib/isogenies/Kani_clapoti.py258
-rw-r--r--theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py567
-rw-r--r--theta_lib/isogenies/gluing_isogeny_dim4.py200
-rw-r--r--theta_lib/isogenies/isogeny_chain_dim4.py114
-rw-r--r--theta_lib/isogenies/isogeny_dim4.py162
-rw-r--r--theta_lib/isogenies/tree.py28
6 files changed, 0 insertions, 1329 deletions
diff --git a/theta_lib/isogenies/Kani_clapoti.py b/theta_lib/isogenies/Kani_clapoti.py
deleted file mode 100644
index 66030e2..0000000
--- a/theta_lib/isogenies/Kani_clapoti.py
+++ /dev/null
@@ -1,258 +0,0 @@
-from sage.all import *
-import itertools
-
-from ..basis_change.kani_base_change import clapoti_cob_splitting_matrix
-from ..basis_change.base_change_dim4 import base_change_theta_dim4
-from ..theta_structures.Tuple_point import TuplePoint
-from ..theta_structures.montgomery_theta import null_point_to_montgomery_coeff, theta_point_to_montgomery_point
-from ..theta_structures.theta_helpers_dim4 import product_to_theta_points_dim4
-from ..utilities.supersingular import torsion_basis_to_Fp_rational_point
-from .Kani_gluing_isogeny_chain_dim4 import KaniClapotiGluing
-from .isogeny_chain_dim4 import IsogenyChainDim4
-
-class KaniClapotiIsog(IsogenyChainDim4):
- r"""Class representing the 4-dimensional isogeny obtained via Kani's lemma F: Eu^2*Ev^2 --> Ea^2*A
- where Ea=[\mf{a}]*E is the result of the ideal class group action by \mf{a} when given relevant
- constants and torsion point information.
-
- INPUT:
- - Pu, Qu = phi_u(P, Q)\in Eu;
- - Pv, Qv = phi_v*phi_{ck}*\hat{\phi}_{bk}(P, Q)\in Ev;
- - gu, xu, yu, gv, xv, yv, Nbk, Nck, e: positive integers;
- where:
- * gu(xu^2+yu^2)Nbk+gv(xv^2+yv^2)Nck=2^e;
- * gcd(u*Nbk,v*Nck)=1 with u:=gu(xu^2+yu^2) and v:=gv(xv^2+yv^2);
- * xu and xv are odd and yu and yv are even;
- * \mf{b}=\mf{be}*\mf{bk} is a product of ideals of norms Nbe and Nbk respectively,
- where Nbe is a product of small Elkies primes;
- * \mf{c}=\mf{ce}*\mf{ck} is a product of ideals of norms Nce and Nck respectively,
- where Nbe is a product of small Elkies primes;
- * phi_{bk}: E --> E1 and phi_{ck}: E --> E2 are induced by the action of
- ideals \mf{bk} and \mf{ck} respectively;
- * <P,Q>=E_1[2^{e+2}];
- * phi_u: E1 --> Eu and phi_v: E2 --> Ev are gu and gv-isogenies respectively.
-
- OUTPUT: F: Eu^2*Ev^2 --> Ea^2*A is the isogeny:
-
- F := [[Phi_{bp}*\tilde{Phi}_u, Phi_{cp}*\tilde{Phi}_v],
- [-Psi, \tilde{Phi}]]
-
- obtained from the Kani isogeny diamond:
-
- A --------------------Phi------------------> Ev^2
- ^ ^
- | |
- | Phi_v
- | |
- Psi E2^2
- | ^
- | |
- | \tilde{Phi}_{ck}
- | |
- Eu^2 --\tilde{Phi}_{u}--> E1^2 --Phi_{bk}--> Ea^2
-
- where Phi_{bk}:=Diag(phi_{bk},phi_{bk}), Phi_{ck}:=Diag(phi_{ck},phi_{ck}),
-
- Phi_u := [[xu, -yu],
- [yu, xu]] * Diag(phi_u,phi_u)
-
- Phi_v := [[xv, -yv],
- [yv, xv]] * Diag(phi_v,phi_v)
- """
-
- def __init__(self,points,integers,strategy=None):
- gu,xu,yu,gv,xv,yv,Nbk,Nck,e = integers
- Pu,Qu,Pv,Qv = points
- if gu*(xu**2+yu**2)*Nbk+gv*(xv**2+yv**2)*Nck!=2**e:
- raise ValueError("Wrong parameters: gu(xu^2+yu^2)Nbk + gv(xv^2+yv^2)Nck != 2^e")
- if gcd(ZZ(gu*(xu**2+yu**2)*Nbk),ZZ(gv*(xv**2+yv**2)*Nck))!=1:
- raise ValueError("Non coprime parameters: gcd(gu(xu^2+yu^2)Nbk, gv(xv^2+yv^2)Nck) != 1")
- if xu%2==0:
- xu,yu=yu,xu
- if xv%2==0:
- xv,yv=yv,xv
-
- self.Eu = Pu.curve()
- self.Ev = Pv.curve()
- Fp2 = parent(Pu[0])
- Fp = Fp2.base_ring()
-
- # Number of dimension 2 steps before dimension 4 gluing Am^2-->B
- m=valuation(xv*yu-xu*yv,2)
- integers=[gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m]
-
- points_mp3=[(2**(e-m-1))*P for P in points]
- points_mp2=[2*P for P in points_mp3]
- points_4=[(2**m)*P for P in points_mp2]
-
- self.Ru_Fp = torsion_basis_to_Fp_rational_point(self.Eu,points_4[0],points_4[1],4)
-
- self.gluing_isogeny_chain = KaniClapotiGluing(points_mp3,points_mp2,points_4,integers, coerce=Fp)
-
- xuNbk = xu*Nbk
- yuNbk = yu*Nbk
- two_ep2 = 2**(e+2)
- inv_Nbk = inverse_mod(Nbk,two_ep2)
- u = gu*(xu**2+yu**2)
- inv_u = inverse_mod(u,4)
- lambxu = ((1-2**e*inv_u*inv_Nbk)*xu)%two_ep2
- lambyu = ((1-2**e*inv_u*inv_Nbk)*yu)%two_ep2
- xv_Nbk = (xv*inv_Nbk)%two_ep2
- yv_Nbk = (yv*inv_Nbk)%two_ep2
-
-
- B_Kpp = [TuplePoint(xuNbk*Pu,yuNbk*Pu,xv*Pv,yv*Pv),
- TuplePoint(-yuNbk*Pu,xuNbk*Pu,-yv*Pv,xv*Pv),
- TuplePoint(lambxu*Qu,lambyu*Qu,xv_Nbk*Qv,yv_Nbk*Qv),
- TuplePoint(-lambyu*Qu,lambxu*Qu,-yv_Nbk*Qv,xv_Nbk*Qv)]
-
- IsogenyChainDim4.__init__(self, B_Kpp, self.gluing_isogeny_chain, e, m, splitting=True, strategy=strategy)
-
- # Splitting
- M_split = clapoti_cob_splitting_matrix(integers)
-
- self.N_split = base_change_theta_dim4(M_split,self.gluing_isogeny_chain.e4)
-
- self.codomain_product = self._isogenies[-1]._codomain.base_change_struct(self.N_split)
-
- # Extracting the group action image Ea=[\mathfrak{a}]*E from the codomain Ea^2*E'^2
- self.theta_null_Ea, self.theta_null_Ep, self.Ea, self.Ep = self.extract_montgomery_curve()
-
-
-
- def extract_montgomery_curve(self):
-
- # Computing the theta null point of Ea
- null_point=self.codomain_product.zero()
- Fp2=parent(null_point[0])
- Fp = Fp2.base_ring()
- for i3, i4 in itertools.product([0,1],repeat=2):
- if null_point[4*i3+8*i4]!=0:
- i30=i3
- i40=i4
- theta_Ea_0=Fp(null_point[4*i3+8*i4])
- theta_Ea_1=Fp(null_point[1+4*i3+8*i4])
- break
- for i1, i2 in itertools.product([0,1],repeat=2):
- if null_point[i1+2*i2]!=0:
- i10=i1
- i20=i2
- theta_Ep_0=Fp(null_point[i1+2*i2])
- theta_Ep_1=Fp(null_point[i1+2*i2+4])
- break
-
- # Sanity check: is the codomain of F a product of the form Ea^2*E'^2 ?
- theta_Ea=[Fp(theta_Ea_0),Fp(theta_Ea_1)]
- theta_Ep=[Fp(theta_Ep_0),Fp(theta_Ep_1)]
-
- theta_Ea2Ep2=[0 for i in range(16)]
- for i1,i2,i3,i4 in itertools.product([0,1],repeat=4):
- theta_Ea2Ep2[i1+2*i2+4*i3+8*i4]=theta_Ea[i1]*theta_Ea[i2]*theta_Ep[i3]*theta_Ep[i4]
- theta_Ea2Ep2=self.codomain_product(theta_Ea2Ep2)
-
- assert theta_Ea2Ep2.is_zero()
-
- A_Ep = null_point_to_montgomery_coeff(theta_Ep_0,theta_Ep_1)
- Ep = EllipticCurve([0,A_Ep,0,1,0])
-
- ## ## Recovering Ea over Fp and not Fp2
- ## self.find_Fp_rational_theta_struct_Ea()
-
- ## theta_Ea = self.iso_Ea(theta_Ea)
- ## A_Ea = null_point_to_montgomery_coeff(theta_Ea[0],theta_Ea[1])
-
- ## # Sanity check : the curve Ea should be defined over Fp
- ## # assert A_Ea[1] == 0
-
- ## # Twisting Ea if necessary: if A_Ea+2 is not a square in Fp, then we take the twist (A_Ea --> -A_Ea)
- ## p=self.Eu.base_field().characteristic()
- ## self.twist = False
- ## if (A_Ea+2)**((p-1)//2)==-1:
- ## A_Ea = -A_Ea
- ## self.twist = True
-
- ## Ea = EllipticCurve([0,A_Ea,0,1,0])
-
- A = null_point_to_montgomery_coeff(theta_Ea_0, theta_Ea_1)
- Ab = null_point_to_montgomery_coeff(theta_Ea_0+theta_Ea_1, theta_Ea_0-theta_Ea_1)
- Acan = min([A, -A, Ab, -Ab])
- Acan = A
- if (Acan == A or Acan == -A):
- # 'Id' corresponds to the point on the twist
- self.iso_type = 'Id'
- else:
- # 'Hadamard' corresponds to the point on the curve
- self.iso_type = 'Hadamard'
- if ((self.iso_type == 'Hadamard' and not (Acan+2).is_square()) or (self.iso_type == 'Id' and (Acan+2).is_square())):
- Acan=-Acan
- if (Acan == A or Acan == Ab):
- self.twist = False
- else:
- self.twist = True
- Ea = EllipticCurve([0,Acan,0,1,0])
-
- # Find the dual null point
- return theta_Ea, theta_Ep, Ea, Ep
-
- def eval_rational_point_4_torsion(self):
- T = TuplePoint(self.Ru_Fp,self.Eu(0),self.Ev(0),self.Ev(0))
-
- FPu_4 = self.evaluate_isogeny(T)
- FPu_4=self.codomain_product.base_change_coords(self.N_split,FPu_4)
- FPu_4=product_to_theta_points_dim4(FPu_4)
-
- return FPu_4[0]
-
- def find_Fp_rational_theta_struct_Ea(self):
- Pa = self.eval_rational_point_4_torsion()
-
- HPa = (Pa[0]+Pa[1],Pa[0]-Pa[1])
- i = self.Eu.base_field().gen()
- self.i = i
- iHPa = (Pa[0]+i*Pa[1],Pa[0]-i*Pa[1])
-
- if Pa[0]==0 or Pa[1]==0:
- self.iso_type='Id'
- elif HPa[0]==0 or HPa[1]==0:
- self.iso_type='Hadamard'
- elif iHPa[0]==0 or iHPa[1]==0:
- self.iso_type='iHadamard'
- else:
- raise ValueError("A rational theta point should be mapped to (0:1) or (1:0) after change of theta coordinates on Ea.")
-
- def iso_Ea(self,P):
- # Change of theta coordinates to obtain Fp-rational theta coordinates on Ea
-
- if self.iso_type == 'Id':
- return P
- elif self.iso_type == 'Hadamard':
- return (P[0]+P[1],P[0]-P[1])
- else:
- return (P[0]+self.i*P[1],P[0]-self.i*P[1])
-
-
- def evaluate(self,P):
- FP=self.evaluate_isogeny(P)
- FP=self.codomain_product.base_change_coords(self.N_split,FP)
-
- FP=product_to_theta_points_dim4(FP)
- FP=TuplePoint([theta_point_to_montgomery_point(self.Ea,self.theta_null_Ea,self.iso_Ea(FP[0]),self.twist),
- theta_point_to_montgomery_point(self.Ea,self.theta_null_Ea,self.iso_Ea(FP[1]),self.twist),
- theta_point_to_montgomery_point(self.Ep,self.theta_null_Ep,FP[2]),
- theta_point_to_montgomery_point(self.Ep,self.theta_null_Ep,FP[3])])
-
- return FP
-
- def __call__(self,P):
- return self.evaluate(P)
-
-
-
-
-
-
-
-
-
-
-
diff --git a/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py b/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py
deleted file mode 100644
index 282219c..0000000
--- a/theta_lib/isogenies/Kani_gluing_isogeny_chain_dim4.py
+++ /dev/null
@@ -1,567 +0,0 @@
-from sage.all import *
-from ..utilities.discrete_log import weil_pairing_pari
-from ..basis_change.canonical_basis_dim1 import make_canonical
-from ..basis_change.kani_base_change import (
- fixed_deg_gluing_matrix_Phi1,
- fixed_deg_gluing_matrix_Phi2,
- fixed_deg_gluing_matrix_dim4,
- clapoti_cob_matrix_dim2,
- clapoti_cob_matrix_dim2_dim4,
- gluing_base_change_matrix_dim2,
- gluing_base_change_matrix_dim2_dim4,
- gluing_base_change_matrix_dim2_F1,
- gluing_base_change_matrix_dim2_F2,
- kernel_basis,
-)
-from ..basis_change.base_change_dim2 import base_change_theta_dim2
-from ..basis_change.base_change_dim4 import base_change_theta_dim4
-from ..theta_structures.Theta_dim1 import ThetaStructureDim1
-from ..theta_structures.Theta_dim2 import ProductThetaStructureDim2
-from ..theta_structures.Tuple_point import TuplePoint
-from ..theta_structures.Theta_dim4 import ProductThetaStructureDim2To4, ThetaPointDim4
-from ..isogenies_dim2.isogeny_chain_dim2 import IsogenyChainDim2
-from .gluing_isogeny_dim4 import GluingIsogenyDim4
-
-class KaniFixedDegDim2Gluing:
- def __init__(self,P_mp3,Q_mp3,a,b,c,d,u,f,m,strategy_dim2=None):
- r"""
- INPUT:
- - P_mp3, Q_mp3: basis of E[2^(m+3)] such that pi(P_mp3)=P_mp3 and pi(Q_mp3)=-Q_mp3.
- - a,b,c,d,u,f: integers such that a**2+c**2+p*(b**2+d**2)=u*(2**f-u), where p is
- ths characteristic of the base field.
- - m: integer such that m=min(v_2(a-b),v_2(a+b)).
-
- OUTPUT: Gluing isogeny chain F_{m+1}\circ...\circ F_1 containing the first m+1 steps of
- the isogeny F: E^4 --> A*A' representing a u-isogeny in dimension 2.
- """
-
- P_mp2 = 2*P_mp3
- Q_mp2 = 2*Q_mp3
- P_4 = 2**m*P_mp2
- Q_4 = 2**m*Q_mp2
-
- E = P_mp3.curve()
-
- # Canonical basis with S_4=(1,0)
- _, _, R_4, S_4, M_dim1 = make_canonical(P_4,Q_4,4,preserve_pairing=True)
-
- Z4 = Integers(4)
- M0 = matrix(Z4,[[M_dim1[0,0],0,M_dim1[0,1],0],
- [0,M_dim1[0,0],0,M_dim1[0,1]],
- [M_dim1[1,0],0,M_dim1[1,1],0],
- [0,M_dim1[1,0],0,M_dim1[1,1]]])
-
- # Theta structures
- Theta_E = ThetaStructureDim1(E,R_4,S_4)
- Theta_EE = ProductThetaStructureDim2(Theta_E,Theta_E)
-
- # Gluing change of basis in dimension 2
- M1 = fixed_deg_gluing_matrix_Phi1(u,a,b,c,d)
- M2 = fixed_deg_gluing_matrix_Phi2(u,a,b,c,d)
-
- M10 = M0*M1
- M20 = M0*M2
-
- Fp2 = E.base_field()
- e4 = Fp2(weil_pairing_pari(R_4,S_4,4))
-
- N_Phi1 = base_change_theta_dim2(M10,e4)
- N_Phi2 = base_change_theta_dim2(M20,e4)
-
- # Gluing change of basis dimension 2 * dimension 2 --> dimension 4
- M_dim4 = fixed_deg_gluing_matrix_dim4(u,a,b,c,d,m)
-
- self.N_dim4 = base_change_theta_dim4(M_dim4,e4)
-
- # Kernel of Phi1 : E^2 --> A_m1 and Phi2 : E^2 --> A_m2
- two_mp2 = 2**(m+2)
- two_mp3 = 2*two_mp2
- mu = inverse_mod(u,two_mp3)
-
- B_K_Phi1 = [TuplePoint((u%two_mp2)*P_mp2,((c+d)%two_mp2)*P_mp2),
- TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,((c-d)%two_mp2)*Q_mp2)]
-
- B_K_Phi2 = [TuplePoint((u%two_mp2)*P_mp2,((d-c)%two_mp2)*P_mp2),
- TuplePoint((((d**2-c**2)*mu)%two_mp2)*Q_mp2,(-(c+d)%two_mp2)*Q_mp2)]
-
- # Computation of the 2**m-isogenies Phi1 and Phi2
- self._Phi1=IsogenyChainDim2(B_K_Phi1,Theta_EE,N_Phi1,m,strategy_dim2)
- self._Phi2=IsogenyChainDim2(B_K_Phi2,Theta_EE,N_Phi2,m,strategy_dim2)
-
- # Kernel of the (m+1)-th isogeny in dimension 4 F_{m+1}: A_m1*A_m2 --> B (gluing isogeny)
-
- B_K_dim4 =[TuplePoint((u%two_mp3)*P_mp3,E(0),((a+b)%two_mp3)*P_mp3,((c+d)%two_mp3)*P_mp3),
- TuplePoint(E(0),(u%two_mp3)*P_mp3,((d-c)%two_mp3)*P_mp3,((a-b)%two_mp3)*P_mp3),
- TuplePoint(((u-2**f)%two_mp3)*Q_mp3,E(0),((a-b)%two_mp3)*Q_mp3,((c-d)%two_mp3)*Q_mp3),
- TuplePoint(E(0),((u-2**f)%two_mp3)*Q_mp3,((-c-d)%two_mp3)*Q_mp3,((a+b)%two_mp3)*Q_mp3)]
-
- L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]
-
- L_K_dim4=[[self._Phi1(TuplePoint(T[0],T[3])),self._Phi2(TuplePoint(T[1],T[2]))] for T in L_K_dim4]
-
- # Product Theta structure on A_m1*A_m2
- self.domain_product=ProductThetaStructureDim2To4(self._Phi1._codomain,self._Phi2._codomain)
-
- # Theta structure on A_m1*A_m2 after change of theta coordinates
- self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
-
- # Converting the kernel to the Theta structure domain_base_change
- L_K_dim4=[self.domain_product.product_theta_point(T[0],T[1]) for T in L_K_dim4]
- L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,T) for T in L_K_dim4]
-
- # Computing the gluing isogeny in dimension 4
- self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)])
-
- # Translates for the evaluation of the gluing isogeny in dimension 4
- self.L_trans=[2*B_K_dim4[k] for k in range(2)]
- self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)
-
- self._codomain=self._gluing_isogeny_dim4._codomain
-
- def evaluate(self,P):
- if not isinstance(P, TuplePoint):
- raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E^4")
-
- # Translating P
- L_P_trans=[P+T for T in self.L_trans]
-
- # dim4 --> dim2 x dim2
- eval_P=[TuplePoint(P[0],P[3]),TuplePoint(P[1],P[2])]
- eval_L_P_trans=[[TuplePoint(Q[0],Q[3]),TuplePoint(Q[1],Q[2])] for Q in L_P_trans]
-
- # evaluating through the dimension 2 isogenies
- eval_P=[self._Phi1(eval_P[0]),self._Phi2(eval_P[1])]
- eval_L_P_trans=[[self._Phi1(Q[0]),self._Phi2(Q[1])] for Q in eval_L_P_trans]
-
- # Product Theta structure and base change
- eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
- eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)
-
- eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
- eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]
-
- return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)
-
- def __call__(self,P):
- return self.evaluate(P)
-
-
-class KaniClapotiGluing:
- def __init__(self,points_mp3,points_mp2,points_4,integers,strategy_dim2=None,coerce=None):
- self._coerce=coerce
- Pu_mp3,Qu_mp3,Pv_mp3,Qv_mp3 = points_mp3
- Pu_mp2,Qu_mp2,Pv_mp2,Qv_mp2 = points_mp2
- Pu_4,Qu_4,Pv_4,Qv_4 = points_4
- gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers
-
- Eu=Pu_4.curve()
- Ev=Pv_4.curve()
-
- lamb_u = inverse_mod(ZZ(gu),4)
- lamb_v = inverse_mod(ZZ(gv*Nbk*Nck),4)
-
-
- # 4-torsion canonical change of basis in Eu and Ev (Su=(1,0), Sv=(1,0))
- _,_,Ru,Su,Mu=make_canonical(Pu_4,lamb_u*Qu_4,4,preserve_pairing=True)
- _,_,Rv,Sv,Mv=make_canonical(Pv_4,lamb_v*Qv_4,4,preserve_pairing=True)
-
- Z4 = Integers(4)
- M0=matrix(Z4,[[Mu[0,0],0,Mu[1,0],0],
- [0,Mv[0,0],0,Mv[1,0]],
- [Mu[0,1],0,Mu[1,1],0],
- [0,Mv[0,1],0,Mv[1,1]]])
-
- self.M_product_dim2=M0
-
- # Theta structures in dimension 1 and 2
- Theta_u=ThetaStructureDim1(Eu,Ru,Su)
- Theta_v=ThetaStructureDim1(Ev,Rv,Sv)
-
- Theta_uv=ProductThetaStructureDim2(Theta_u,Theta_v)
-
- # Gluing change of basis in dimension 2
- M1 = clapoti_cob_matrix_dim2(integers)
- M10 = M0*M1
-
- Fp2 = Eu.base_field()
- e4 = Fp2(weil_pairing_pari(Ru,Su,4))
- self.e4 = e4
-
- N_dim2 = base_change_theta_dim2(M10,e4)
-
- # Gluing change of basis dimension 2 * dimension 2 --> dimension 4
- M2 = clapoti_cob_matrix_dim2_dim4(integers)
-
- self.N_dim4 = base_change_theta_dim4(M2,e4)
-
- # Kernel of the 2**m-isogeny chain in dimension 2
- two_mp2=2**(m+2)
- two_mp3=2*two_mp2
- u=ZZ(gu*(xu**2+yu**2))
- mu=inverse_mod(u,two_mp2)
- suv=ZZ(xu*xv+yu*yv)
- duv=ZZ(xv*yu-xu*yv)
- uNbk=(u*Nbk)%two_mp2
- gusuv=(gu*suv)%two_mp2
- xK2=(uNbk+gu*gv*mu*Nck*duv**2)%two_mp2
- B_K_dim2 = [TuplePoint(uNbk*Pu_mp2,gusuv*Pv_mp2),TuplePoint(xK2*Qu_mp2,gusuv*Qv_mp2)]
-
- # Computation of the 2**m-isogeny chain in dimension 2
- self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta_uv,N_dim2,m,strategy_dim2)
-
- # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny)
- xuNbk = (xu*Nbk)%two_mp3
- yuNbk = (yu*Nbk)%two_mp3
- inv_Nbk = inverse_mod(Nbk,two_mp3)
- lambxu = ((1-2**e)*xu)%two_mp3 # extreme case m=e-2, 2^e = 2^(m+2) so 2^e/(u*Nbk) = 2^e mod 2^(m+3).
- lambyu = ((1-2**e)*yu)%two_mp3
- xv_Nbk = (xv*inv_Nbk)%two_mp3
- yv_Nbk = (yv*inv_Nbk)%two_mp3
-
- B_K_dim4 = [TuplePoint(xuNbk*Pu_mp3,yuNbk*Pu_mp3,xv*Pv_mp3,yv*Pv_mp3),
- TuplePoint(-yuNbk*Pu_mp3,xuNbk*Pu_mp3,-yv*Pv_mp3,xv*Pv_mp3),
- TuplePoint(lambxu*Qu_mp3,lambyu*Qu_mp3,xv_Nbk*Qv_mp3,yv_Nbk*Qv_mp3),
- TuplePoint(-lambyu*Qu_mp3,lambxu*Qu_mp3,-yv_Nbk*Qv_mp3,xv_Nbk*Qv_mp3)]
-
- L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]
-
- L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)]
-
- # Product Theta structure on A_m^2
- self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain)
-
- # Theta structure on A_m^2 after change of theta coordinates
- self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
-
- # Converting the kernel to the Theta structure domain_base_change
- L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)]
- L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)]
-
- # Computing the gluing isogeny in dimension 4
- self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)], coerce=self._coerce)
-
- # Translates for the evaluation of the gluing isogeny in dimension 4
- self.L_trans=[2*B_K_dim4[k] for k in range(2)]
- self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)
-
- self._codomain=self._gluing_isogeny_dim4._codomain
-
- def evaluate(self,P):
- if not isinstance(P, TuplePoint):
- raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product Eu^2 x Ev^2")
-
- # Translating P
- L_P_trans=[P+T for T in self.L_trans]
-
- # dim4 --> dim2 x dim2
- eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])]
- eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans]
-
- # evaluating through the dimension 2 isogenies
- eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])]
- eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans]
-
- # Product Theta structure and base change
- eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
- eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)
-
- eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
- eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]
-
- return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)
-
- def __call__(self,P):
- return self.evaluate(P)
-
-
-
-class KaniGluingIsogenyChainDim4:
- def __init__(self,points_m,points_4,a1,a2,q,m,strategy_dim2=None):
- r"""
-
- INPUT:
- - points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3)
- such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is
- its image by sigma: E1 --> E2.
- - points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by
- multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1).
- - a1, a2, q: integers such that a1**2+a2**2+q=2**e.
- - m: 2-adic valuation of a2.
-
- OUTPUT: Composition of the m+1 first isogenies in the isogeny chained
- E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma.
- """
-
- P1_m, Q1_m, R2_m, S2_m = points_m
- P1_4, Q1_4, R2_4, S2_4 = points_4
-
- E1=P1_m.curve()
- E2=R2_m.curve()
-
- Fp2=E1.base_field()
-
- lamb=inverse_mod(q,4)
-
- _,_,T1,T2,MT=make_canonical(P1_4,Q1_4,4,preserve_pairing=True)
- _,_,U1,U2,MU=make_canonical(R2_4,lamb*S2_4,4,preserve_pairing=True)
-
- Z4=Integers(4)
- M0=matrix(Z4,[[MT[0,0],0,MT[1,0],0],
- [0,MU[0,0],0,MU[1,0]],
- [MT[0,1],0,MT[1,1],0],
- [0,MU[0,1],0,MU[1,1]]])
-
- self.M_product_dim2=M0
-
- # Theta structures in dimension 1 and 2
- Theta1=ThetaStructureDim1(E1,T1,T2)
- Theta2=ThetaStructureDim1(E2,U1,U2)
-
- Theta12=ProductThetaStructureDim2(Theta1,Theta2)
-
- self.Theta1=Theta1
- self.Theta2=Theta2
- self.Theta12=Theta12
-
- # Gluing base change in dimension 2
- M1=gluing_base_change_matrix_dim2(a1,a2,q)
- M10=M0*M1
-
- self.M_gluing_dim2=M1
-
- e4=Fp2(weil_pairing_pari(T1,T2,4))
-
- self.e4=e4
-
- N_dim2=base_change_theta_dim2(M10,e4)
- #N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1)
-
- # Gluing base change in dimension 4
- mua2=-M1[3,1]
- M2=gluing_base_change_matrix_dim2_dim4(a1,a2,m,mua2)
-
- self.M_gluing_dim4=M2
-
- self.N_dim4=base_change_theta_dim4(M2,e4)
-
- # Kernel of the 2**m-isogeny chain in dimension 2
- a1_red=a1%(2**(m+2))
- a2_red=a2%(2**(m+2))
- B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)]
-
- # Computation of the 2**m-isogeny chain in dimension 2
- self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2)
-
- # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny)
- a1_red=a1%(2**(m+3))
- a2_red=a2%(2**(m+3))
-
- a1P1_m=(a1_red)*P1_m
- a2P1_m=(a2_red)*P1_m
- a1Q1_m=(a1_red)*Q1_m
- a2Q1_m=(a2_red)*Q1_m
-
- OE2=E2(0)
-
- B_K_dim4=[TuplePoint(a1P1_m,a2P1_m,R2_m,OE2),TuplePoint(a1Q1_m,a2Q1_m,S2_m,OE2),
- TuplePoint(-a2P1_m,a1P1_m,OE2,R2_m),TuplePoint(-a2Q1_m,a1Q1_m,OE2,S2_m)]
- L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]
-
- L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)]
-
- # Product Theta structure on A_m^2
- self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain)
-
- # Theta structure on A_m^2 after base change
- self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
-
- # Converting the kernel to the Theta structure domain_base_change
- L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)]
- L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)]
-
- # Computing the gluing isogeny in dimension 4
- self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)])
-
- # Translates for the evaluation of the gluing isogeny in dimension 4
- self.L_trans=[2*B_K_dim4[k] for k in range(2)]
- self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)
-
- self._codomain=self._gluing_isogeny_dim4._codomain
-
- def evaluate(self,P):
- if not isinstance(P, TuplePoint):
- raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2")
-
- # Translating P
- L_P_trans=[P+T for T in self.L_trans]
-
- # dim4 --> dim2 x dim2
- eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])]
- eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans]
-
- # evaluating through the dimension 2 isogenies
- eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])]
- eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans]
-
- # Product Theta structure and base change
- eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
- eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)
-
- eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
- eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]
-
- return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)
-
- def __call__(self,P):
- return self.evaluate(P)
-
-class KaniGluingIsogenyChainDim4Half:
- def __init__(self, points_m, a1, a2, q, m, Theta12, M_product_dim2, M_start_dim4, M_gluing_dim4, e4, dual=False,strategy_dim2=None):#points_m,points_4,a1,a2,q,m,precomputed_data=None,dual=False,strategy_dim2=None):
- r"""
-
- INPUT:
- - points_m: list of 4 points P1_m, Q1_m, R2_m, S2_m of order 2**(m+3)
- such that (P1_m,Q1_m) generates E1[2**(m+3)] and (R2_m,S2_m) is
- its image by sigma: E1 --> E2.
- - points_4: list of 4 points P1_4, Q1_4, R2_4, S2_4 of order 4 obtained by
- multiplying P1_m, Q1_m, R2_m, S2_m by 2**(m+1).
- - a1, a2, q: integers such that a1**2+a2**2+q=2**e.
- - m: 2-adic valuation of a2.
-
- OUTPUT: Composition of the m+1 first isogenies in the isogeny chained
- E1^2*E1^2 --> E1^2*E2^2 parametrized by a1, a2 and sigma via Kani's lemma.
- """
-
- P1_m, Q1_m, R2_m, S2_m = points_m
-
- E1=P1_m.curve()
- E2=R2_m.curve()
-
- Fp2=E1.base_field()
-
- self.M_product_dim2 = M_product_dim2
-
- self.Theta12=Theta12
-
- self.e4=e4
-
- # Gluing base change in dimension 2
- if not dual:
- M1=gluing_base_change_matrix_dim2_F1(a1,a2,q)
- else:
- M1=gluing_base_change_matrix_dim2_F2(a1,a2,q)
-
- M10=M_product_dim2*M1
-
- self.M_gluing_dim2=M1
-
- self.e4=e4
-
- N_dim2=base_change_theta_dim2(M10,e4)
- #N_dim2=montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N1)
-
- # Gluing base change in dimension 4
-
- self.M_gluing_dim4 = M_gluing_dim4
-
- self.N_dim4 = base_change_theta_dim4(M_gluing_dim4, e4)
-
- # Kernel of the 2**m-isogeny chain in dimension 2
- a1_red=a1%(2**(m+2))
- a2_red=a2%(2**(m+2))
- if not dual:
- B_K_dim2=[TuplePoint(2*a1_red*P1_m-2*a2_red*Q1_m,2*R2_m),TuplePoint(2*a1_red*Q1_m+2*a2_red*P1_m,2*S2_m)]
- else:
- B_K_dim2=[TuplePoint(2*a1_red*P1_m+2*a2_red*Q1_m,-2*R2_m),TuplePoint(2*a1_red*Q1_m-2*a2_red*P1_m,-2*S2_m)]
-
- # Computation of the 2**m-isogeny chain in dimension 2
- self._isogenies_dim2=IsogenyChainDim2(B_K_dim2,Theta12,N_dim2,m,strategy_dim2)
-
- # Kernel of the (m+1)-th isogeny in dimension 4 f_{m+1}: A_m^2 --> B (gluing isogeny)
- lamb=inverse_mod(q,2**(m+3))
- B_K_dim4=kernel_basis(M_start_dim4,m+1,P1_m,Q1_m,R2_m,lamb*S2_m)
- L_K_dim4=B_K_dim4+[B_K_dim4[0]+B_K_dim4[1]]
-
- L_K_dim4=[[self._isogenies_dim2(TuplePoint(L_K_dim4[k][0],L_K_dim4[k][2])),self._isogenies_dim2(TuplePoint(L_K_dim4[k][1],L_K_dim4[k][3]))] for k in range(5)]
-
- # Product Theta structure on A_m^2
- self.domain_product=ProductThetaStructureDim2To4(self._isogenies_dim2._codomain,self._isogenies_dim2._codomain)
-
- # Theta structure on A_m^2 after base change
- self.domain_base_change=self.domain_product.base_change_struct(self.N_dim4)
-
- # Converting the kernel to the Theta structure domain_base_change
- L_K_dim4=[self.domain_product.product_theta_point(L_K_dim4[k][0],L_K_dim4[k][1]) for k in range(5)]
- L_K_dim4=[self.domain_base_change.base_change_coords(self.N_dim4,L_K_dim4[k]) for k in range(5)]
-
- # Computing the gluing isogeny in dimension 4
- self._gluing_isogeny_dim4=GluingIsogenyDim4(self.domain_base_change,L_K_dim4,[(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(1,1,0,0)])
-
- # Translates for the evaluation of the gluing isogeny in dimension 4
- self.L_trans=[2*B_K_dim4[k] for k in range(2)]
- self.L_trans_ind=[1,2] # Corresponds to multi indices (1,0,0,0) and (0,1,0,0)
-
- self._codomain=self._gluing_isogeny_dim4._codomain
-
- def evaluate(self,P):
- if not isinstance(P, TuplePoint):
- raise TypeError("KaniGluingIsogenyChainDim4 isogeny expects as input a TuplePoint on the domain product E1^2 x E2^2")
-
- # Translating P
- L_P_trans=[P+T for T in self.L_trans]
-
- # dim4 --> dim2 x dim2
- eval_P=[TuplePoint(P[0],P[2]),TuplePoint(P[1],P[3])]
- eval_L_P_trans=[[TuplePoint(Q[0],Q[2]),TuplePoint(Q[1],Q[3])] for Q in L_P_trans]
-
- # evaluating through the dimension 2 isogenies
- eval_P=[self._isogenies_dim2(eval_P[0]),self._isogenies_dim2(eval_P[1])]
- eval_L_P_trans=[[self._isogenies_dim2(Q[0]),self._isogenies_dim2(Q[1])] for Q in eval_L_P_trans]
-
- # Product Theta structure and base change
- eval_P=self.domain_product.product_theta_point(eval_P[0],eval_P[1])
- eval_P=self.domain_base_change.base_change_coords(self.N_dim4,eval_P)
-
- eval_L_P_trans=[self.domain_product.product_theta_point(Q[0],Q[1]) for Q in eval_L_P_trans]
- eval_L_P_trans=[self.domain_base_change.base_change_coords(self.N_dim4,Q) for Q in eval_L_P_trans]
-
- return self._gluing_isogeny_dim4.special_image(eval_P,eval_L_P_trans,self.L_trans_ind)
-
- def __call__(self,P):
- return self.evaluate(P)
-
- def dual(self):
- domain = self._codomain.hadamard()
- codomain_base_change = self.domain_base_change
- codomain_product = self.domain_product
- N_dim4 = self.N_dim4.inverse()
- isogenies_dim2 = self._isogenies_dim2.dual()
- splitting_isogeny_dim4 = self._gluing_isogeny_dim4.dual()
-
- return KaniSplittingIsogenyChainDim4(domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4)
-
-class KaniSplittingIsogenyChainDim4:
- def __init__(self, domain, codomain_base_change, codomain_product, N_dim4, isogenies_dim2, splitting_isogeny_dim4):
- self._domain = domain
- self.codomain_base_change = codomain_base_change
- self.codomain_product = codomain_product
- self.N_dim4 = N_dim4
- self._isogenies_dim2 = isogenies_dim2
- self._splitting_isogeny_dim4 = splitting_isogeny_dim4
-
- def evaluate(self,P):
- if not isinstance(P, ThetaPointDim4):
- raise TypeError("KaniSplittingIsogenyChainDim4 isogeny expects as input a ThetaPointDim4")
-
- Q = self._splitting_isogeny_dim4(P)
- Q = self.codomain_product.base_change_coords(self.N_dim4, Q)
- Q1, Q2 = self.codomain_product.to_theta_points(Q)
- Q1, Q2 = self._isogenies_dim2._domain(Q1.hadamard()), self._isogenies_dim2._domain(Q2.hadamard())
-
- Q1 = self._isogenies_dim2(Q1)
- Q2 = self._isogenies_dim2(Q2)
-
- return TuplePoint(Q1[0],Q2[0],Q1[1],Q2[1])
-
- def __call__(self,P):
- return self.evaluate(P)
diff --git a/theta_lib/isogenies/gluing_isogeny_dim4.py b/theta_lib/isogenies/gluing_isogeny_dim4.py
deleted file mode 100644
index cd738c9..0000000
--- a/theta_lib/isogenies/gluing_isogeny_dim4.py
+++ /dev/null
@@ -1,200 +0,0 @@
-from sage.all import *
-
-from ..theta_structures.Theta_dim4 import ThetaStructureDim4
-from ..theta_structures.theta_helpers_dim4 import hadamard, squared, batch_inversion, multindex_to_index
-from .tree import Tree
-from .isogeny_dim4 import IsogenyDim4, DualIsogenyDim4
-
-def proj_equal(P1, P2):
- if len(P1) != len(P2):
- return False
- for i in range(0, len(P1)):
- if P1[i]==0:
- if P2[i] != 0:
- return False
- else:
- break
- r=P1[i]
- s=P2[i]
- for i in range(0, len(P1)):
- if P1[i]*s != P2[i]*r:
- return False
- return True
-
-class GluingIsogenyDim4(IsogenyDim4):
- def __init__(self,domain,L_K_8,L_K_8_ind, coerce=None):
- r"""
- Input:
- - domain: a ThetaStructureDim4.
- - L_K_8: list of points of 8-torsion in the kernel.
- - L_K_8_ind: list of corresponding multindices (i0,i1,i2,i3) of points in L_K_8
- (L_K_8[i]=i0*P0+i1*P1+i2*P2+i3*P3, where (P0,..,P3) is a basis of K_8 (compatible with
- the canonical basis of K_2) and L_K_8_ind[i]=(i0,i1,i2,i3)).
- """
-
- if not isinstance(domain, ThetaStructureDim4):
- raise ValueError("Argument domain should be a ThetaStructureDim4 object.")
- self._domain = domain
- self._precomputation=None
- self._coerce=coerce
- self._special_compute_codomain(L_K_8,L_K_8_ind)
-
- #a_i2=squared(self._domain.zero())
- #HB_i2=hadamard(squared(hadamard(self._codomain.zero())))
- #for i in range(16):
- #print(HB_i2[i]/a_i2[i])
-
- def _special_compute_codomain(self,L_K_8,L_K_8_ind):
- r"""
- Input:
- - L_K_8: list of points of 8-torsion in the kernel.
- - L_K_8_ind: list of corresponding multindices (i0,i1,i2,i3) of points in L_K_8
- (L_K_8[i]=i0*P0+i1*P1+i2*P2+i3*P3, where (P0,..,P3) is a basis of K_8 (compatible with
- the canonical basis of K_2) and L_K_8_ind[i]=(i0,i1,i2,i3)).
-
- Output:
- - codomain of the isogeny.
- Also initializes self._precomputation, containing the inverse of theta-constants.
- """
- HSK_8=[hadamard(squared(P.coords())) for P in L_K_8]
-
- # Choice of reference index j_0<->chi_0 corresponding to a non-vanishing theta-constant.
- found_tree=False
- j_0=0
- while not found_tree:
- found_k0=False
- for k in range(len(L_K_8)):
- if HSK_8[k][j_0]!=0:
- k_0=k
- found_k0=True
- break
- if not found_k0:
- j_0+=1
- else:
- j0pk0=j_0^multindex_to_index(L_K_8_ind[k_0])
- # List of tuples of indices (index chi of the denominator: HS(f(P_k))_chi,
- #index chi.chi_k of the numerator: HS(f(P_k))_chi.chi_k, index k).
- L_ratios_ind=[(j_0,j0pk0,k_0)]
- L_covered_ind=[j_0,j0pk0]
-
- # Tree containing the the theta-null points indices as nodes and the L_ratios_ind reference indices as edges.
- tree_ratios=Tree(j_0)
- tree_ratios.add_child(Tree(j0pk0),0)
-
- # Filling in the tree
- tree_filled=False
- while not tree_filled:
- found_j=False
- for j in L_covered_ind:
- for k in range(len(L_K_8)):
- jpk=j^multindex_to_index(L_K_8_ind[k])
- if jpk not in L_covered_ind and HSK_8[k][j]!=0:
- L_covered_ind.append(jpk)
- L_ratios_ind.append((j,jpk,k))
- tree_j=tree_ratios.look_node(j)
- tree_j.add_child(Tree(jpk),len(L_ratios_ind)-1)
- found_j=True
- #break
- #if found_j:
- #break
- if not found_j or len(L_covered_ind)==16:
- tree_filled=True
- if len(L_covered_ind)!=16:
- j_0+=1
- else:
- found_tree=True
-
- L_denom=[HSK_8[t[2]][t[0]] for t in L_ratios_ind]
- L_denom_inv=batch_inversion(L_denom)
- L_num=[HSK_8[t[2]][t[1]] for t in L_ratios_ind]
- L_ratios=[L_num[i]*L_denom_inv[i] for i in range(15)]
-
- L_coords_ind=tree_ratios.edge_product(L_ratios)
-
- O_coords=[ZZ(0) for i in range(16)]
- for t in L_coords_ind:
- if self._coerce:
- O_coords[t[1]]=self._coerce(t[0])
- else:
- O_coords[t[1]]=t[0]
-
- # Precomputation
- # TODO: optimize inversions and give precomputation to the codomain _arithmetic_precomputation
- L_prec=[]
- L_prec_ind=[]
- for i in range(16):
- if O_coords[i]!=0:
- L_prec.append(O_coords[i])
- L_prec_ind.append(i)
- L_prec_inv=batch_inversion(L_prec)
- precomputation=[None for i in range(16)]
- for i in range(len(L_prec)):
- precomputation[L_prec_ind[i]]=L_prec_inv[i]
-
- self._precomputation=precomputation
-
- for k in range(len(L_K_8)):
- for j in range(16):
- jpk=j^multindex_to_index(L_K_8_ind[k])
- assert HSK_8[k][j]*O_coords[jpk]==HSK_8[k][jpk]*O_coords[j]
-
- assert proj_equal(squared(self._domain._null_point.coords()), hadamard(squared(O_coords)))
-
- self._codomain=ThetaStructureDim4(hadamard(O_coords),null_point_dual=O_coords)
-
- def special_image(self,P,L_trans,L_trans_ind):
- r"""Used when we cannot evaluate the isogeny self because the codomain has zero
- dual theta constants.
-
- Input:
- - P: ThetaPointDim4 of the domain.
- - L_trans: list of translates of P+T of P by points of 4-torsion T above the kernel.
- - L_trans_ind: list of indices of the translation 4-torsion points T.
- If L_trans[i]=\sum i_j*B_K4[j] then L_trans_ind[j]=\sum 2**j*i_j.
-
- Output:
- - the image of P by the isogeny self.
- """
- HS_P=hadamard(squared(P.coords()))
- HSL_trans=[hadamard(squared(Q.coords())) for Q in L_trans]
- O_coords=self._codomain.null_point_dual()
-
- # L_lambda_inv: List of inverses of lambda_i such that:
- # HS(P+Ti)=(lambda_i*U_{chi.chi_i,0}(f(P))*U_{chi,0}(0))_chi.
- L_lambda_inv_num=[]
- L_lambda_inv_denom=[]
-
- for k in range(len(L_trans)):
- for j in range(16):
- jpk=j^L_trans_ind[k]
- if HSL_trans[k][j]!=0 and O_coords[jpk]!=0:
- L_lambda_inv_num.append(HS_P[jpk]*O_coords[j])
- L_lambda_inv_denom.append(HSL_trans[k][j]*O_coords[jpk])
- break
- L_lambda_inv_denom=batch_inversion(L_lambda_inv_denom)
- L_lambda_inv=[L_lambda_inv_num[i]*L_lambda_inv_denom[i] for i in range(len(L_trans))]
-
- for k in range(len(L_trans)):
- for j in range(16):
- jpk=j^L_trans_ind[k]
- assert HS_P[jpk]*O_coords[j]==L_lambda_inv[k]*HSL_trans[k][j]*O_coords[jpk]
-
- U_fP=[]
- for i in range(16):
- if self._precomputation[i]!=None:
- U_fP.append(self._precomputation[i]*HS_P[i])
- else:
- for k in range(len(L_trans)):
- ipk=i^L_trans_ind[k]
- if self._precomputation[ipk]!=None:
- U_fP.append(self._precomputation[ipk]*HSL_trans[k][ipk]*L_lambda_inv[k])
- break
-
- fP=hadamard(U_fP)
- if self._coerce:
- fP=[self._coerce(x) for x in fP]
-
- return self._codomain(fP)
-
- def dual(self):
- return DualIsogenyDim4(self._codomain,self._domain, hadamard=False)
diff --git a/theta_lib/isogenies/isogeny_chain_dim4.py b/theta_lib/isogenies/isogeny_chain_dim4.py
deleted file mode 100644
index 8c0b78e..0000000
--- a/theta_lib/isogenies/isogeny_chain_dim4.py
+++ /dev/null
@@ -1,114 +0,0 @@
-from sage.all import *
-from ..utilities.strategy import precompute_strategy_with_first_eval, precompute_strategy_with_first_eval_and_splitting
-from .isogeny_dim4 import IsogenyDim4
-
-
-class IsogenyChainDim4:
- def __init__(self, B_K, first_isogenies, e, m, splitting=True, strategy = None):
- self.e=e
- self.m=m
-
- if strategy == None:
- strategy = self.get_strategy(splitting)
- self.strategy = strategy
-
- self._isogenies=self.isogeny_chain(B_K, first_isogenies)
-
-
- def get_strategy(self,splitting):
- if splitting:
- return precompute_strategy_with_first_eval_and_splitting(self.e,self.m,M=1,S=0.8,I=100)
- else:
- return precompute_strategy_with_first_eval(self.e,self.m,M=1,S=0.8,I=100)
-
- def isogeny_chain(self, B_K, first_isogenies):
- """
- Compute the isogeny chain and store intermediate isogenies for evaluation
- """
- # Store chain of (2,2)-isogenies
- isogeny_chain = []
-
- # Bookkeeping for optimal strategy
- strat_idx = 0
- level = [0]
- ker = B_K
- kernel_elements = [ker]
-
- # Length of the chain
- n=self.e-self.m
-
- for k in range(n):
- prev = sum(level)
- ker = kernel_elements[-1]
-
- while prev != (n - 1 - k):
- level.append(self.strategy[strat_idx])
- prev += self.strategy[strat_idx]
-
- # Perform the doublings and update kernel elements
- # Prevent the last unnecessary doublings for first isogeny computation
- if k>0 or prev!=n-1:
- ker = [ker[i].double_iter(self.strategy[strat_idx]) for i in range(4)]
- kernel_elements.append(ker)
-
- # Update bookkeeping variable
- strat_idx += 1
-
- # Compute the codomain from the 8-torsion
- if k==0:
- phi = first_isogenies
- else:
- phi = IsogenyDim4(Th,ker)
-
- # Update the chain of isogenies
- Th = phi._codomain
- # print(parent(Th.null_point().coords()[0]))
- isogeny_chain.append(phi)
-
- # Remove elements from list
- if k>0:
- kernel_elements.pop()
- level.pop()
-
- # Push through points for the next step
- kernel_elements = [[phi(T) for T in kernel] for kernel in kernel_elements]
- # print([[parent(T.coords()[0]) for T in kernel] for kernel in kernel_elements])
-
- return isogeny_chain
-
- def evaluate_isogeny(self,P):
- Q=P
- for f in self._isogenies:
- Q=f(Q)
- return Q
-
- def __call__(self,P):
- return self.evaluate_isogeny(P)
-
- def dual(self):
- n=len(self._isogenies)
- isogenies=[]
- for i in range(n):
- isogenies.append(self._isogenies[n-1-i].dual())
- return DualIsogenyChainDim4(isogenies)
-
-
-class DualIsogenyChainDim4:
- def __init__(self,isogenies):
- self._isogenies=isogenies
-
- def evaluate_isogeny(self,P):
- n=len(self._isogenies)
- Q=P
- for j in range(n):
- Q=self._isogenies[j](Q)
- return Q
-
- def __call__(self,P):
- return self.evaluate_isogeny(P)
-
-
-
-
-
-
diff --git a/theta_lib/isogenies/isogeny_dim4.py b/theta_lib/isogenies/isogeny_dim4.py
deleted file mode 100644
index 2f483bf..0000000
--- a/theta_lib/isogenies/isogeny_dim4.py
+++ /dev/null
@@ -1,162 +0,0 @@
-from sage.all import *
-
-from ..theta_structures.Theta_dim4 import ThetaStructureDim4
-from ..theta_structures.theta_helpers_dim4 import hadamard, squared, batch_inversion
-from .tree import Tree
-
-class IsogenyDim4:
- def __init__(self,domain,K_8,codomain=None,precomputation=None):
- r"""
- Input:
- - domain: a ThetaStructureDim4.
- - K_8: a list of 4 points of 8-torision (such that 4*K_8 is a kernel basis), used to compute the codomain.
- - codomain: a ThetaStructureDim4 (for the codomain, used only when K_8 is None).
- - precomputation: list of inverse of dual theta constants of the codomain, used to compute the image.
- """
-
- if not isinstance(domain, ThetaStructureDim4):
- raise ValueError("Argument domain should be a ThetaStructureDim4 object.")
- self._domain = domain
- self._precomputation=None
- if K_8!=None:
- self._compute_codomain(K_8)
- else:
- self._codomain=codomain
- self._precomputation=precomputation
-
- def _compute_codomain(self,K_8):
- r"""
- Input:
- - K_8: a list of 4 points of 8-torision (such that 4*K_8 is a kernel basis).
-
- Output:
- - codomain of the isogeny.
- Also initializes self._precomputation, containing the inverse of theta-constants.
- """
- HSK_8=[hadamard(squared(P.coords())) for P in K_8]
-
- # Choice of reference index j_0<->chi_0 corresponding to a non-vanishing theta-constant.
- found_tree=False
- j_0=0
- while not found_tree:
- found_k0=False
- for k in range(4):
- if j_0>15:
- raise NotImplementedError("The codomain of this 2-isogeny could not be computed.\nWe may have encountered a product of abelian varieties\nsomewhere unexpected along the chain.\nThis is exceptionnal and should not happen in larger characteristic.")
- if HSK_8[k][j_0]!=0:
- k_0=k
- found_k0=True
- break
- if not found_k0:
- j_0+=1
- else:
- j0pk0=j_0^(2**k_0)
- # List of tuples of indices (index chi of the denominator: HS(f(P_k))_chi,
- #index chi.chi_k of the numerator: HS(f(P_k))_chi.chi_k, index k).
- L_ratios_ind=[(j_0,j0pk0,k_0)]
- L_covered_ind=[j_0,j0pk0]
-
- # Tree containing the the theta-null points indices as nodes and the L_ratios_ind reference indices as edges.
- tree_ratios=Tree(j_0)
- tree_ratios.add_child(Tree(j0pk0),k_0)
-
- # Filling in the tree
- tree_filled=False
- while not tree_filled:
- found_j=False
- for j in L_covered_ind:
- for k in range(4):
- jpk=j^(2**k)
- if jpk not in L_covered_ind and HSK_8[k][j]!=0:
- L_covered_ind.append(jpk)
- L_ratios_ind.append((j,jpk,k))
- tree_j=tree_ratios.look_node(j)
- tree_j.add_child(Tree(jpk),len(L_ratios_ind)-1)
- found_j=True
- break
- if found_j:
- break
- if not found_j or len(L_covered_ind)==16:
- tree_filled=True
- if len(L_covered_ind)!=16:
- j_0+=1
- else:
- found_tree=True
-
- L_denom=[HSK_8[t[2]][t[0]] for t in L_ratios_ind]
- L_denom_inv=batch_inversion(L_denom)
- L_num=[HSK_8[t[2]][t[1]] for t in L_ratios_ind]
- L_ratios=[L_num[i]*L_denom_inv[i] for i in range(15)]
-
- L_coords_ind=tree_ratios.edge_product(L_ratios)
-
- O_coords=[ZZ(0) for i in range(16)]
- for t in L_coords_ind:
- O_coords[t[1]]=t[0]
-
- # Precomputation
- # TODO: optimize inversions
- L_prec=[]
- L_prec_ind=[]
- for i in range(16):
- if O_coords[i]!=0:
- L_prec.append(O_coords[i])
- L_prec_ind.append(i)
- L_prec_inv=batch_inversion(L_prec)
- precomputation=[None for i in range(16)]
- for i in range(len(L_prec)):
- precomputation[L_prec_ind[i]]=L_prec_inv[i]
-
- self._precomputation=precomputation
- # Assumes there is no zero theta constant. Otherwise, squared(precomputation) will raise an error (None**2 does not exist)
- self._codomain=ThetaStructureDim4(hadamard(O_coords),null_point_dual=O_coords)
-
- def codomain(self):
- return self._codomain
-
- def domain(self):
- return self._domain
-
- def image(self,P):
- HS_P=list(hadamard(squared(P.coords())))
-
- for i in range(16):
- HS_P[i] *=self._precomputation[i]
-
- return self._codomain(hadamard(HS_P))
-
- def dual(self):
- return DualIsogenyDim4(self._codomain,self._domain, hadamard=True)
-
- def __call__(self,P):
- return self.image(P)
-
-
-class DualIsogenyDim4:
- def __init__(self,domain,codomain,hadamard=True):
- # domain and codomain are respectively the domain and codomain of \tilde{f}: domain-->codomain,
- # so respectively the codomain and domain of f: codomain-->domain.
- # By convention, domain input is given in usual coordinates (ker(\tilde{f})=K_2).
- # codomain is in usual coordinates if hadamard, in dual coordinates otherwise.
- self._domain=domain.hadamard()
- self._hadamard=hadamard
- if hadamard:
- self._codomain=codomain.hadamard()
- self._precomputation=batch_inversion(codomain.zero().coords())
- else:
- self._codomain=codomain
- self._precomputation=batch_inversion(codomain.zero().coords())
-
- def image(self,P):
- # When ker(f)=K_2, ker(\tilde{f})=K_1 so ker(\tilde{f})=K_2 after hadamard transformation of the
- # new domain (ex codomain)
- HS_P=list(hadamard(squared(P.coords())))
- for i in range(16):
- HS_P[i] *=self._precomputation[i]
- if self._hadamard:
- return self._codomain(hadamard(HS_P))
- else:
- return self._codomain(HS_P)
-
- def __call__(self,P):
- return self.image(P)
diff --git a/theta_lib/isogenies/tree.py b/theta_lib/isogenies/tree.py
deleted file mode 100644
index a6e3da3..0000000
--- a/theta_lib/isogenies/tree.py
+++ /dev/null
@@ -1,28 +0,0 @@
-from sage.all import *
-
-class Tree:
- def __init__(self,node):
- self._node=node
- self._edges=[]
- self._children=[]
-
- def add_child(self,child,edge):
- self._children.append(child)
- self._edges.append(edge)
-
- def look_node(self,node):
- if self._node==node:
- return self
- elif len(self._children)>0:
- for child in self._children:
- t_node=child.look_node(node)
- if t_node!=None:
- return t_node
-
- def edge_product(self,L_factors,factor_node=ZZ(1)):
- n=len(self._children)
- L_prod=[(factor_node,self._node)]
- for i in range(n):
- L_prod+=self._children[i].edge_product(L_factors,factor_node*L_factors[self._edges[i]])
- return L_prod
-