diff options
Diffstat (limited to 'theta_lib/basis_change')
-rw-r--r-- | theta_lib/basis_change/base_change_dim2.py | 150 | ||||
-rw-r--r-- | theta_lib/basis_change/base_change_dim4.py | 152 | ||||
-rw-r--r-- | theta_lib/basis_change/canonical_basis_dim1.py | 76 | ||||
-rw-r--r-- | theta_lib/basis_change/kani_base_change.py | 975 |
4 files changed, 0 insertions, 1353 deletions
diff --git a/theta_lib/basis_change/base_change_dim2.py b/theta_lib/basis_change/base_change_dim2.py deleted file mode 100644 index 4994529..0000000 --- a/theta_lib/basis_change/base_change_dim2.py +++ /dev/null @@ -1,150 +0,0 @@ -from sage.all import * - -import itertools - -def complete_symplectic_matrix_dim2(C, D, n=4): - Zn = Integers(n) - - # Compute first row - F = D.stack(-C).transpose() - xi = F.solve_right(vector(Zn, [1, 0])) - - # Rearrange TODO: why? - v = vector(Zn, [xi[2], xi[3], -xi[0], -xi[1]]) - - # Compute second row - F2 = F.stack(v) - yi = F2.solve_right(vector(Zn, [0, 1, 0])) - M = Matrix(Zn, - [ - [xi[0], yi[0], C[0, 0], C[0, 1]], - [xi[1], yi[1], C[1, 0], C[1, 1]], - [xi[2], yi[2], D[0, 0], D[0, 1]], - [xi[3], yi[3], D[1, 0], D[1, 1]], - ], - ) - - return M - -def block_decomposition(M): - """ - Given a 4x4 matrix, return the four 2x2 matrices as blocks - """ - A = M.matrix_from_rows_and_columns([0, 1], [0, 1]) - B = M.matrix_from_rows_and_columns([2, 3], [0, 1]) - C = M.matrix_from_rows_and_columns([0, 1], [2, 3]) - D = M.matrix_from_rows_and_columns([2, 3], [2, 3]) - return A, B, C, D - -def is_symplectic_matrix_dim2(M): - A, B, C, D = block_decomposition(M) - if B.transpose() * A != A.transpose() * B: - return False - if C.transpose() * D != D.transpose() * C: - return False - if A.transpose() * D - B.transpose() * C != identity_matrix(2): - return False - return True - -def base_change_theta_dim2(M, zeta): - r""" - Computes the matrix N (in row convention) of the new level 2 - theta coordinates after a symplectic base change of A[4] given - by M\in Sp_4(Z/4Z). We have: - (theta'_i)=N*(theta_i) - where the theta'_i are the new theta coordinates and theta_i, - the theta coordinates induced by the product theta structure. - N depends on the fourth root of unity zeta=e_4(Si,Ti) (where - (S0,S1,T0,T1) is a symplectic basis if A[4]). - - Inputs: - - M: symplectic base change matrix. - - zeta: a primitive 4-th root of unity induced by the Weil-pairings - of the symplectic basis of A[4]. - - Output: Matrix N of base change of theta-coordinates. - """ - # Split 4x4 matrix into 2x2 blocks - A, B, C, D = block_decomposition(M) - - # Initialise N to 4x4 zero matrix - N = [[0 for _ in range(4)] for _ in range(4)] - - def choose_non_vanishing_index(C, D, zeta): - """ - Choice of reference non-vanishing index (ir0,ir1) - """ - for ir0, ir1 in itertools.product([0, 1], repeat=2): - L = [0, 0, 0, 0] - for j0, j1 in itertools.product([0, 1], repeat=2): - k0 = C[0, 0] * j0 + C[0, 1] * j1 - k1 = C[1, 0] * j0 + C[1, 1] * j1 - - l0 = D[0, 0] * j0 + D[0, 1] * j1 - l1 = D[1, 0] * j0 + D[1, 1] * j1 - - e = -(k0 + 2 * ir0) * l0 - (k1 + 2 * ir1) * l1 - L[ZZ(k0 + ir0) % 2 + 2 * (ZZ(k1 + ir1) % 2)] += zeta ** (ZZ(e)) - - # Search if any L value in L is not zero - if any([x != 0 for x in L]): - return ir0, ir1 - - ir0, ir1 = choose_non_vanishing_index(C, D, zeta) - - for i0, i1, j0, j1 in itertools.product([0, 1], repeat=4): - k0 = A[0, 0] * i0 + A[0, 1] * i1 + C[0, 0] * j0 + C[0, 1] * j1 - k1 = A[1, 0] * i0 + A[1, 1] * i1 + C[1, 0] * j0 + C[1, 1] * j1 - - l0 = B[0, 0] * i0 + B[0, 1] * i1 + D[0, 0] * j0 + D[0, 1] * j1 - l1 = B[1, 0] * i0 + B[1, 1] * i1 + D[1, 0] * j0 + D[1, 1] * j1 - - e = i0 * j0 + i1 * j1 - (k0 + 2 * ir0) * l0 - (k1 + 2 * ir1) * l1 - N[i0 + 2 * i1][ZZ(k0 + ir0) % 2 + 2 * (ZZ(k1 + ir1) % 2)] += zeta ** (ZZ(e)) - - return Matrix(N) - -def montgomery_to_theta_matrix_dim2(zero12,N=identity_matrix(4),return_null_point=False): - r""" - Computes the matrix that transforms Montgomery coordinates on E1*E2 into theta coordinates - with respect to a certain theta structure given by a base change matrix N. - - Input: - - zero12: theta-null point for the product theta structure on E1*E2[2]: - zero12=[zero1[0]*zero2[0],zero1[1]*zero2[0],zero1[0]*zero2[1],zero1[1]*zero2[1]], - where the zeroi are the theta-null points of Ei for i=1,2. - - N: base change matrix from the product theta-structure. - - return_null_point: True if the theta-null point obtained after applying N to zero12 is returned. - - Output: - - Matrix for the change of coordinates: - (X1*X2,Z1*X2,X1*Z2,Z1*Z2)-->(theta_00,theta_10,theta_01,theta_11). - - If return_null_point, the theta-null point obtained after applying N to zero12 is returned. - """ - - Fp2=zero12[0].parent() - - M=zero_matrix(Fp2,4,4) - - for i in range(4): - for j in range(4): - M[i,j]=N[i,j]*zero12[j] - - M2=[] - for i in range(4): - M2.append([M[i,0]+M[i,1]+M[i,2]+M[i,3],-M[i,0]-M[i,1]+M[i,2]+M[i,3],-M[i,0]+M[i,1]-M[i,2]+M[i,3],M[i,0]-M[i,1]-M[i,2]+M[i,3]]) - - if return_null_point: - null_point=[M[i,0]+M[i,1]+M[i,2]+M[i,3] for i in range(4)] - return Matrix(M2), null_point - else: - return Matrix(M2) - -def apply_base_change_theta_dim2(N,P): - Q=[] - for i in range(4): - Q.append(0) - for j in range(4): - Q[i]+=N[i,j]*P[j] - return Q - diff --git a/theta_lib/basis_change/base_change_dim4.py b/theta_lib/basis_change/base_change_dim4.py deleted file mode 100644 index aaf685f..0000000 --- a/theta_lib/basis_change/base_change_dim4.py +++ /dev/null @@ -1,152 +0,0 @@ -from sage.all import * -import itertools - -from ..theta_structures.theta_helpers_dim4 import multindex_to_index - -def bloc_decomposition(M): - I1=[0,1,2,3] - I2=[4,5,6,7] - - A=M[I1,I1] - B=M[I2,I1] - C=M[I1,I2] - D=M[I2,I2] - - return A,B,C,D - -def mat_prod_vect(A,I): - J=[] - for i in range(4): - J.append(0) - for k in range(4): - J[i]+=A[i,k]*I[k] - return tuple(J) - -def add_tuple(I,J): - K=[] - for k in range(4): - K.append(I[k]+J[k]) - return tuple(K) - -def scal_prod_tuple(I,J): - s=0 - for k in range(4): - s+=I[k]*J[k] - return s - -def red_mod_2(I): - J=[] - for x in I: - J.append(ZZ(x)%2) - return tuple(J) - -def choose_non_vanishing_index(C,D,zeta): - for I0 in itertools.product([0,1],repeat=4): - L=[0 for k in range(16)] - for J in itertools.product([0,1],repeat=4): - CJ=mat_prod_vect(C,J) - DJ=mat_prod_vect(D,J) - e=-scal_prod_tuple(CJ,DJ)-2*scal_prod_tuple(I0,DJ) - - I0pDJ=add_tuple(I0,CJ) - - L[multindex_to_index(red_mod_2(I0pDJ))]+=zeta**(ZZ(e)) - for k in range(16): - if L[k]!=0: - return I0,L - - -def base_change_theta_dim4(M,zeta): - - Z4=Integers(4) - A,B,C,D=bloc_decomposition(M.change_ring(Z4)) - - I0,L0=choose_non_vanishing_index(C,D,zeta) - - - N=[L0]+[[0 for j in range(16)] for i in range(15)] - for I in itertools.product([0,1],repeat=4): - if I!=(0,0,0,0): - AI=mat_prod_vect(A,I) - BI=mat_prod_vect(B,I) - for J in itertools.product([0,1],repeat=4): - CJ=mat_prod_vect(C,J) - DJ=mat_prod_vect(D,J) - - AIpCJ=add_tuple(AI,CJ) - BIpDJ=add_tuple(BI,DJ) - - e=scal_prod_tuple(I,J)-scal_prod_tuple(AIpCJ,BIpDJ)-2*scal_prod_tuple(I0,BIpDJ) - N[multindex_to_index(I)][multindex_to_index(red_mod_2(add_tuple(AIpCJ,I0)))]+=zeta**(ZZ(e)) - - Fp2=zeta.parent() - return matrix(Fp2,N) - -def apply_base_change_theta_dim4(N,P): - Q=[] - for i in range(16): - Q.append(0) - for j in range(16): - Q[i]+=N[i,j]*P[j] - return Q - -def complete_symplectic_matrix_dim4(C,D,n=4): - Zn=Integers(n) - - Col_I4=[matrix(Zn,[[1],[0],[0],[0]]),matrix(Zn,[[0],[1],[0],[0],[0]]), - matrix(Zn,[[0],[0],[1],[0],[0],[0]]),matrix(Zn,[[0],[0],[0],[1],[0],[0],[0]])] - - L_DC=block_matrix([[D.transpose(),-C.transpose()]]) - Col_AB_i=L_DC.solve_right(Col_I4[0]) - A_t=Col_AB_i[[0,1,2,3],0].transpose() - B_t=Col_AB_i[[4,5,6,7],0].transpose() - - for i in range(1,4): - F=block_matrix(2,1,[L_DC,block_matrix(1,2,[B_t,-A_t])]) - Col_AB_i=F.solve_right(Col_I4[i]) - A_t=block_matrix(2,1,[A_t,Col_AB_i[[0,1,2,3],0].transpose()]) - B_t=block_matrix(2,1,[B_t,Col_AB_i[[4,5,6,7],0].transpose()]) - - A=A_t.transpose() - B=B_t.transpose() - - M=block_matrix([[A,C],[B,D]]) - - return M - -def random_symmetric_matrix(n,r): - Zn=Integers(n) - M=zero_matrix(Zn,r,r) - for i in range(r): - M[i,i]=randint(0,n-1) - for i in range(r): - for j in range(i+1,r): - M[i,j]=randint(0,n-1) - M[j,i]=M[i,j] - return M - - -def random_symplectic_matrix(n): - Zn=Integers(n) - - C=random_symmetric_matrix(n,4) - Cp=random_symmetric_matrix(n,4) - - A=random_matrix(Zn,4,4) - while not A.is_invertible(): - A=random_matrix(Zn,4,4) - - tA_inv=A.inverse().transpose() - ACp=A*Cp - return block_matrix([[ACp,A],[C*ACp-tA_inv,C*A]]) - -def is_symplectic_matrix_dim4(M): - A,B,C,D=bloc_decomposition(M) - if B.transpose()*A!=A.transpose()*B: - return False - if C.transpose()*D!=D.transpose()*C: - return False - if A.transpose()*D-B.transpose()*C!=identity_matrix(4): - return False - return True - diff --git a/theta_lib/basis_change/canonical_basis_dim1.py b/theta_lib/basis_change/canonical_basis_dim1.py deleted file mode 100644 index e1c3d1f..0000000 --- a/theta_lib/basis_change/canonical_basis_dim1.py +++ /dev/null @@ -1,76 +0,0 @@ -from sage.all import * -from ..utilities.discrete_log import weil_pairing_pari, discrete_log_pari - -def last_four_torsion(E): - a_inv=E.a_invariants() - A =a_inv[1] - if a_inv != (0,A,0,1,0): - raise ValueError("The elliptic curve E is not in the Montgomery model.") - y2=A-2 - y=y2.sqrt() - return E([-1,y,1]) - - -def make_canonical(P,Q,A,preserve_pairing=False): - r""" - Input: - - P,Q: a basis of E[A]. - - A: an integer divisible by 4. - - preserve_pairing: boolean indicating if we want to preserve pairing at level 4. - - Output: - - P1,Q1: basis of E[A]. - - U1,U2: basis of E[4] induced by (P1,Q1) ((A//4)*P1=U1, (A//4)*Q1=U2) such that U2[0]=-1 - and e_4(U1,U2)=i if not preserve_pairing and e_4(U1,U2)=e_4((A//4)*P,(A//4)*Q) if preserve_pairing. - - M: base change matrix (in row convention) from (P1,Q1) to (P,Q). - - We say that (U1,U2) is canonical and that (P1,Q1) induces or lies above a canonical basis. - """ - E=P.curve() - Fp2=E.base_ring() - i=Fp2.gen() - - assert i**2==-1 - - T2=last_four_torsion(E) - V1=(A//4)*P - V2=(A//4)*Q - U1=V1 - U2=V2 - - a1=discrete_log_pari(weil_pairing_pari(U1,T2,4),i,4) - b1=discrete_log_pari(weil_pairing_pari(U2,T2,4),i,4) - - if a1%2!=0: - c1=inverse_mod(a1,4) - d1=c1*b1 - P1=P - Q1=Q-d1*P - U1,U2=U1,U2-d1*U1 - M=matrix(ZZ,[[1,0],[d1,1]]) - else: - c1=inverse_mod(b1,4) - d1=c1*a1 - P1=Q - Q1=P-d1*Q - U1,U2=U2,U1-d1*U2 - M=matrix(ZZ,[[d1,1],[1,0]]) - - if preserve_pairing: - e4=weil_pairing_pari(V1,V2,4) - else: - e4=i - - if weil_pairing_pari(U1,U2,4)!=e4: - U2=-U2 - Q1=-Q1 - M[0,1]=-M[0,1] - M[1,1]=-M[1,1] - - assert (A//4)*P1==U1 - assert (A//4)*Q1==U2 - assert weil_pairing_pari(U1,U2,4)==e4 - assert M[0,0]*P1+M[0,1]*Q1==P - assert M[1,0]*P1+M[1,1]*Q1==Q - - return P1,Q1,U1,U2,M diff --git a/theta_lib/basis_change/kani_base_change.py b/theta_lib/basis_change/kani_base_change.py deleted file mode 100644 index e6de2e2..0000000 --- a/theta_lib/basis_change/kani_base_change.py +++ /dev/null @@ -1,975 +0,0 @@ -from sage.all import * -from ..basis_change.canonical_basis_dim1 import make_canonical -from ..basis_change.base_change_dim2 import is_symplectic_matrix_dim2 -from ..basis_change.base_change_dim4 import ( - complete_symplectic_matrix_dim4, - is_symplectic_matrix_dim4, - bloc_decomposition, -) -from ..theta_structures.Tuple_point import TuplePoint - - -def base_change_canonical_dim2(P1,P2,R1,R2,q,f): - r""" - - Input: - - P1, P2: basis of E1[2**f]. - - R1, R2: images of P1, P2 by \sigma: E1 --> E2. - - q: degree of \sigma. - - f: log_2(order of P1 and P2). - - Output: - - P1_doubles: list of 2**i*P1 for i in {0,...,f-2}. - - P2_doubles: list of 2**i*P2 for i in {0,...,f-2}. - - R1_doubles: list of 2**i*R1 for i in {0,...,f-2}. - - R2_doubles: list of 2**i*R2 for i in {0,...,f-2}, - - T1, T2: canonical basis of E1[4]. - - U1, U2: canonical basis of E2[4]. - - M0: base change matrix of the symplectic basis 2**(f-2)*B1 of E1*E2[4] given by: - B1:=[[(P1,0),(0,R1)],[(P2,0),(0,lamb*R2)]] - where lamb is the modular inverse of q mod 2**f, so that: - e_{2**f}(P1,P2)=e_{2**f}(R1,lamb*R2). - in the canonical symplectic basis: - B0:=[[(T1,0),(0,U1)],[(T2,0),(0,U2)]]. - """ - lamb=inverse_mod(q,4) - - P1_doubles=[P1] - P2_doubles=[P2] - R1_doubles=[R1] - R2_doubles=[R2] - - for i in range(f-2): - P1_doubles.append(2*P1_doubles[-1]) - P2_doubles.append(2*P2_doubles[-1]) - R1_doubles.append(2*R1_doubles[-1]) - R2_doubles.append(2*R2_doubles[-1]) - - # Constructing canonical basis of E1[4] and E2[4]. - _,_,T1,T2,MT=make_canonical(P1_doubles[-1],P2_doubles[-1],4,preserve_pairing=True) - _,_,U1,U2,MU=make_canonical(R1_doubles[-1],lamb*R2_doubles[-1],4,preserve_pairing=True) - - Z4=Integers(4) - M0=matrix(Z4,[[MT[0,0],0,MT[1,0],0], - [0,MU[0,0],0,MU[1,0]], - [MT[0,1],0,MT[1,1],0], - [0,MU[0,1],0,MU[1,1]]]) - - return P1_doubles,P2_doubles,R1_doubles,R2_doubles,T1,T2,U1,U2,M0 - -def gluing_base_change_matrix_dim2(a1,a2,q): - r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of E1*E2[4] - given by the kernel of the dimension 2 gluing isogeny: - B_K4=2**(f-2)[([a1]P1-[a2]P2,R1),([a1]P2+[a2]P1,R2)] - in the basis $2**(f-2)*B1$ given by: - B1:=[[(P1,0),(0,R1)],[(P2,0),(0,lamb*R2)]] - where: - - lamb is the inverse of q modulo 2**f. - - (P1,P2) is the canonical basis of E1[2**f]. - - (R1,R2) is the image of (P1,P2) by sigma. - - Input: - - a1, q: integers. - - Output: - - M: symplectic base change matrix of (*,B_K4) in 2**(f-2)*B1. - """ - - Z4=Integers(4) - - mu=inverse_mod(a1,4) - - A=matrix(Z4,[[0,mu], - [0,0]]) - B=matrix(Z4,[[0,0], - [-1,-ZZ(mu*a2)]]) - - C=matrix(Z4,[[ZZ(a1),ZZ(a2)], - [1,0]]) - D=matrix(Z4,[[-ZZ(a2),ZZ(a1)], - [0,ZZ(q)]]) - - #M=complete_symplectic_matrix_dim2(C, D, 4) - M=block_matrix([[A,C],[B,D]]) - - assert is_symplectic_matrix_dim2(M) - - return M - -# ============================================== # -# Functions for the class KaniClapotiIsog # -# ============================================== # - -def clapoti_cob_matrix_dim2(integers): - gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers - - xu = ZZ(xu) - xv = ZZ(xv) - Nbk = ZZ(Nbk) - Nck = ZZ(Nck) - u = ZZ(gu*(xu**2+yu**2)) - v = ZZ(gv*(xv**2+yv**2)) - mu = inverse_mod(u,4) - suv = xu*xv+yu*yv - inv_Nbk = inverse_mod(Nbk,4) - inv_gugvNcksuv = inverse_mod(gu*gv*Nck*suv,4) - - Z4=Integers(4) - - M=matrix(Z4,[[0,0,u*Nbk,0], - [0,inv_Nbk*inv_gugvNcksuv,gu*suv,0], - [-inv_Nbk*mu,0,0,gu*Nbk*u], - [0,0,0,gu*gv*Nbk*Nck*suv]]) - - assert is_symplectic_matrix_dim2(M) - - return M - -def clapoti_cob_matrix_dim2_dim4(integers): - gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers - - xu = ZZ(xu) - yu = ZZ(yu) - xv = ZZ(xv) - yv = ZZ(yv) - gu = ZZ(gu) - gv = ZZ(gv) - Nbk = ZZ(Nbk) - Nck = ZZ(Nck) - u = ZZ(gu*(xu**2+yu**2)) - v = ZZ(gv*(xv**2+yv**2)) - suv = xu*xv+yu*yv - duv = xv*yu-xu*yv - duv_2m = duv//2**m - mu = inverse_mod(u,4) - nu = inverse_mod(v,4) - sigmauv = inverse_mod(suv,4) - inv_guNbk = inverse_mod(gu*Nbk,4) - lamb = nu*gu*gv*Nbk*suv - mu1 = ZZ(mu*gu**2*gv*suv*Nbk*Nck*duv_2m) - mu2 = ZZ(duv_2m*gu*sigmauv*(Nbk*u*yu+gv*xv*Nck*duv)) - mu3 = ZZ(duv_2m*gu*sigmauv*(Nbk*u*xu-gv*yv*Nck*duv)) - - Z4=Integers(4) - - M=matrix(Z4,[[gu*xu,-gu*yu,0,0,0,0,mu2,mu3], - [0,0,lamb*xv,-lamb*yv,mu1*yu,mu1*xu,0,0], - [gu*yu,gu*xu,0,0,0,0,-mu3,mu2], - [0,0,lamb*yv,lamb*xv,-mu1*xu,mu1*yu,0,0], - [0,0,0,0,mu*xu,-mu*yu,0,0], - [0,0,0,0,0,0,inv_guNbk*xv*sigmauv,-inv_guNbk*yv*sigmauv], - [0,0,0,0,mu*yu,mu*xu,0,0], - [0,0,0,0,0,0,inv_guNbk*yv*sigmauv,inv_guNbk*xv*sigmauv]]) - - assert is_symplectic_matrix_dim4(M) - - return M - -def clapoti_cob_splitting_matrix(integers): - gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers - - v=ZZ(gv*(xv**2+yv**2)) - vNck=ZZ(v*Nck) - inv_vNck=inverse_mod(vNck,4) - - Z4=Integers(4) - - M=matrix(Z4,[[0,0,0,0,-1,0,0,0], - [0,0,0,0,0,-1,0,0], - [0,0,vNck,0,0,0,0,0], - [0,0,0,vNck,0,0,0,0], - [1,0,-vNck,0,0,0,0,0], - [0,1,0,-vNck,0,0,0,0], - [0,0,0,0,1,0,inv_vNck,0], - [0,0,0,0,0,1,0,inv_vNck]]) - - assert is_symplectic_matrix_dim4(M) - - return M - -# =============================================== # -# Functions for the class KaniFixedDegDim2 # -# =============================================== # - -def fixed_deg_gluing_matrix_Phi1(u,a,b,c,d): - u,a,b,c,d = ZZ(u),ZZ(a),ZZ(b),ZZ(c),ZZ(d) - - mu = inverse_mod(u,4) - inv_cmd = inverse_mod(c-d,4) - - Z4 = Integers(4) - - M = matrix(Z4,[[0,0,u,0], - [0,inv_cmd,c+d,0], - [-mu,0,0,(d**2-c**2)*mu], - [0,0,0,c-d]]) - - assert is_symplectic_matrix_dim2(M) - - return M - -def fixed_deg_gluing_matrix_Phi2(u,a,b,c,d): - u,a,b,c,d = ZZ(u),ZZ(a),ZZ(b),ZZ(c),ZZ(d) - - mu = inverse_mod(u,4) - inv_cpd = inverse_mod(c+d,4) - - Z4 = Integers(4) - - M = matrix(Z4,[[0,0,u,0], - [0,-inv_cpd,d-c,0], - [-mu,0,0,(d**2-c**2)*mu], - [0,0,0,-(c+d)]]) - - assert is_symplectic_matrix_dim2(M) - - return M - -def fixed_deg_gluing_matrix_dim4(u,a,b,c,d,m): - u,a,b,c,d = ZZ(u),ZZ(a),ZZ(b),ZZ(c),ZZ(d) - - mu = inverse_mod(u,4) - nu = ZZ((-mu**2)%4) - amb_2m = ZZ((a-b)//2**m) - apb_2m = ZZ((a+b)//2**m) - u2pc2md2_2m = ZZ((u**2+c**2-d**2)//2**m) - inv_cmd = inverse_mod(c-d,4) - inv_cpd = inverse_mod(c+d,4) - - - Z4 = Integers(4) - - M = matrix(Z4,[[1,0,0,0,0,0,-u2pc2md2_2m,-apb_2m*(c+d)], - [0,0,(c+d)*(c-d)*nu,(a-b)*(c-d)*nu,0,amb_2m*(c-d),0,0], - [0,1,0,0,0,0,amb_2m*(c-d),-u2pc2md2_2m], - [0,0,-(a+b)*(c+d)*nu,(c+d)*(c-d)*nu,-apb_2m*(c+d),0,0,0], - [0,0,0,0,1,0,0,0], - [0,0,0,0,0,0,1,(a+b)*inv_cmd], - [0,0,0,0,0,1,0,0], - [0,0,0,0,0,0,(b-a)*inv_cpd,1]]) - - assert is_symplectic_matrix_dim4(M) - - return M - -def fixed_deg_gluing_matrix(u,a,b,c,d): - r""" - Deprecated. - """ - - mu = inverse_mod(u,4) - nu = (-mu**2)%4 - - Z4 = Integers(4) - - M = matrix(Z4,[[0,0,0,0,ZZ(u),0,0,0], - [0,0,0,0,0,ZZ(u),0,0], - [0,0,ZZ(nu*(a+b)),ZZ(nu*(d-c)),ZZ(a+b),ZZ(d-c),0,0], - [0,0,ZZ(nu*(c+d)),ZZ(nu*(a-b)),ZZ(c+d),ZZ(a-b),0,0], - [ZZ(-mu),0,0,0,0,0,ZZ(u),0], - [0,ZZ(-mu),0,0,0,0,0,ZZ(u)], - [0,0,0,0,0,0,ZZ(a-b),ZZ(-c-d)], - [0,0,0,0,0,0,ZZ(c-d),ZZ(a+b)]]) - - assert is_symplectic_matrix_dim4(M) - - return M - -def fixed_deg_splitting_matrix(u): - - mu = inverse_mod(u,4) - - Z4 = Integers(4) - - M = matrix(Z4,[[0,0,0,0,-1,0,0,0], - [0,0,0,0,0,-1,0,0], - [0,0,ZZ(-u),0,0,0,0,0], - [0,0,0,ZZ(-u),0,0,0,0], - [1,0,ZZ(-mu),0,0,0,0,0], - [0,1,0,ZZ(-mu),0,0,0,0], - [0,0,0,0,ZZ(mu),0,ZZ(mu),0], - [0,0,0,0,0,ZZ(mu),0,ZZ(mu)]]) - - assert is_symplectic_matrix_dim4(M) - - return M - - -# ========================================================== # -# Functions for the class KaniEndo (one isogeny chain) # -# ========================================================== # - -def gluing_base_change_matrix_dim2_dim4(a1,a2,m,mua2): - r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of Am*Am[4] - given by the kernel of the dimension 4 gluing isogeny Am*Am-->B: - - B_K4=2**(e-m)[(Phi([a1]P1,sigma(P1)),Phi([a2]P1,0)),(Phi([a1]P2,sigma(P2)),Phi([a2]P2,0)), - (Phi(-[a2]P1,0),Phi([a1]P1,sigma(P1))),(Phi(-[a2]P2,0),Phi([a2]P2,sigma(P2)))] - - in the basis associated to the product theta-structure of level 2 of Am*Am: - - B:=[(S1,0),(S2,0),(0,S1),(0,S2),(T1,0),(T2,0),(0,T1),(0,T2)] - - where: - - (P1,P2) is the canonical basis of E1[2**f]. - - (R1,R2) is the image of (P1,P2) by sigma. - - Phi is the 2**m-isogeny E1*E2-->Am (m first steps of the chain in dimension 2). - - S1=[2**e]Phi([lamb]P2,[a]sigma(P1)+[b]sigma(P2)). - - S2=[2**e]Phi([mu]P1,[c]sigma(P1)+[d]sigma(P2)). - - T1=[2**(e-m)]Phi([a1]P1-[a2]P2,sigma(P1)). - - T2=[2**(e-m)]Phi([a1]P2+[a2]P1,sigma(P2)). - - (S1,S2,T1,T2) is induced by the image by Phi of a symplectic basis of E1*E2[2**(m+2)] lying - above the symplectic basis of E1*E2[4] outputted by gluing_base_change_matrix_dim2. - - INPUT: - - a1, a2: integers. - - m: integer (number of steps in dimension 2). - - mua2: product mu*a2. - - OUTPUT: - - M: symplectic base change matrix of (*,B_K4) in B. - """ - a1a2_2m=ZZ(a1*a2//2**m) - a22_2m=ZZ(a2**2//2**m) - - Z4=Integers(4) - - C=matrix(Z4,[[-a1a2_2m,a22_2m,a22_2m,a1a2_2m], - [-a22_2m,-a1a2_2m,-a1a2_2m,a22_2m], - [-a22_2m,-a1a2_2m,-a1a2_2m,a22_2m], - [a1a2_2m,-a22_2m,-a22_2m,-a1a2_2m]]) - - D=matrix(Z4,[[1,0,0,0], - [mua2,1,0,-mua2], - [0,0,1,0], - [0,mua2,mua2,1]]) - - M=complete_symplectic_matrix_dim4(C,D,4) - - assert is_symplectic_matrix_dim4(M) - - return M - -def splitting_base_change_matrix_dim4(a1,a2,q,m,M0,A_B,mu=None): - r""" - Let F be the endomorphism of E1^2*E2^2 given by Kani's lemma. Write: - E1^2*E2^2 -- Phi x Phi --> Am^2 -- G --> E1^2*E2^2, - where Phi: E1 x E1 --> Am is a 2**m-isogeny in dimension 2. - Let (U_1,...,U_4,V_1,...,V_4) be a symplectic basis of Am^2[2**(e-m+2)] - such that V_i=Phi x Phi(W_i), where W_1,...,W_4 have order 2**(e+2), lie over ker(F) - and generate an isotropic subgroup: - W_1=([a1]P1-[2^e/a1]P1,[a2]P1,R2,0) - W_2=([a1]Q1,[a2]Q1,S2,0) - W_3=(-[a2]P1,[a1]P1,0,R2) - W_4=(-[a2]Q1,[a1]Q1,0,S2), - with (P1,Q1), a basis of E1[2**(e+2)] and (R2,S2) its image via - sigma: E1 --> E2. Then B:=([2^(e-m)]G(U_1),...,[2^(e-m)]G(U_4),G(V_1),...,G(V_4)) - is a symplectic basis of E1^2*E2^2[4]. - - We assume that ([2^(e-m)]U_1,...,[2^(e-m)]U_4) is the symplectic complement of - ([2^(e-m)]V_1,...,[2^(e-m)]V_4) that has been outputted by - gluing_base_change_matrix_dim2_dim4 for the gluing isogeny on Am^2 - (first 2-isogeny of G). This function computes the base change matrix of B - in the symplectic basis of E1^2*E2^2[4]: - B0=[(T1,0,0,0),(0,T1,0,0),(0,0,T2,0),(0,0,0,T2),(U1,0,0,0),(0,U1,0,0), - (0,0,U2,0),(0,0,0,U2)] - associated to the product Theta structure on E1^2*E2^2. - - INPUT: - - a1,a2,q: integers defining F (q=deg(sigma)). - - m: 2-adic valuation of a2. - - M0: base change matrix of the symplectic basis 2**e*B1 of E1*E2[4] - given by: - B1:=[[(P1,0),(0,R2)],[(Q1,0),(0,lamb*S2)]] - in the canonical symplectic basis: - B0:=[[(T1,0),(0,T2)],[(U1,0),(0,U2)]], - where lamb is the modular inverse of q mod 2**(e+2), so that: - e_{2**(e+2)}(P1,P2)=e_{2**(e+2)}(R1,lamb*R2). - - A_B: 4 first columns (left part) of the symplectic matrix outputted by - gluing_base_change_matrix_dim2_dim4. - - mu, a, b, c, d: integers defining the product Theta structure of Am^2 - given by the four torsion basis [2**(e-m)]*B1 of Am, where: - B1=[[2**m]Phi([2**(m+1)]P2,[a]sigma(P1)+[b]sigma(P2)), - [2**m]Phi([mu]P1,[2**(m+1)]sigma(P1)+[d]sigma(P2)), - Phi([a1]P1-[a2]P2,sigma(P1)), - Phi([a1]P2+[a2]P1,sigma(P2))]. - Only mu is given. - - OUTPUT: The desired base change matrix. - """ - Z4=Integers(4) - - a2_2m=ZZ(a2//2**m) - a12_q_2m=ZZ((a1**2+q)//2**m) - - inv_q=inverse_mod(q,4) - inv_a1=inverse_mod(a1,4) - - lamb=ZZ(2**(m+1)) - if mu==None: - mu=ZZ((1-2**(m+1)*q)*inv_a1) - a=ZZ(2**(m+1)*a2*inv_q) - b=ZZ(-(1+2**(m+1)*a1)*inv_q) - c=ZZ(2**(m+1)) - d=ZZ(-mu*a2*inv_q) - - # Matrix of the four torsion basis of E1^2*E2^2[4] given by - # ([2^(e-m)]G(B1[0],0),[2^(e-m)]G(B1[1],0),[2^(e-m)]G(0,B1[0]),[2^(e-m)]G(0,B1[1]), - # G(B1[2],0),G(B1[3],0),G(0,B1[2]),G(0,B1[3])) in the basis induced by - # [2**e](P1,Q1,R2,[1/q]S2) - M1=matrix(Z4,[[a*q,mu*a1+c*q,0,mu*a2,a12_q_2m,a1*a2_2m,a1*a2_2m,a2*a2_2m], - [0,-mu*a2,a*q,mu*a1+c*q,-a1*a2_2m,-a2*a2_2m,a12_q_2m,a1*a2_2m], - [a1*a,a1*c-mu,-a*a2,-c*a2,0,-a2_2m,-a2_2m,0], - [a2*a,a2*c,a*a1,c*a1-mu,a2_2m,0,0,-a2_2m], - [lamb*a1+b*q,d*q,lamb*a2,0,-a1*a2_2m,a12_q_2m,-a2*a2_2m,a1*a2_2m], - [-lamb*a2,0,lamb*a1+b*q,d*q,a2*a2_2m,-a1*a2_2m,-a1*a2_2m,a12_q_2m], - [(a1*b-lamb)*q,a1*d*q,-b*a2*q,-a2*d*q,a2_2m*q,0,0,-a2_2m*q], - [a2*b*q,a2*d*q,(b*a1-lamb)*q,a1*d*q,0,a2_2m*q,a2_2m*q,0]]) - #A,B,C,D=bloc_decomposition(M1) - #if B.transpose()*A!=A.transpose()*B: - #print("B^T*A!=A^T*B") - #if C.transpose()*D!=D.transpose()*C: - #print("C^T*D!=D^T*C") - #if A.transpose()*D-B.transpose()*C!=identity_matrix(4): - #print(A.transpose()*D-B.transpose()*C) - #print("A^T*D-B^T*C!=I") - #print(M1) - #print(M1.det()) - - # Matrix of ([2^e]G(U_1),...,[2^e]G(U_4)) in the basis induced by - # [2**e](P1,Q1,R2,[1/q]S2) - M_left=M1*A_B - #print(A_B) - #print(M_left) - - # Matrix of (G(V_1),...,G(V_4)) in the basis induced by [2**e](P1,Q1,R2,[1/q]S2) - M_right=matrix(Z4,[[0,0,0,0], - [a2*inv_a1,0,1,0], - [inv_a1,0,0,0], - [0,0,0,0], - [0,1,0,-a2*inv_a1], - [0,0,0,0], - [0,0,0,0], - [0,0,0,q*inv_a1]]) - - # Matrix of the basis induced by [2**e](P1,Q1,R2,[1/q]S2) in the basis - # B0 (induced by T1, U1, T2, U2) - MM0=matrix(Z4,[[M0[0,0],0,M0[0,1],0,M0[0,2],0,M0[0,3],0], - [0,M0[0,0],0,M0[0,1],0,M0[0,2],0,M0[0,3]], - [M0[1,0],0,M0[1,1],0,M0[1,2],0,M0[1,3],0], - [0,M0[1,0],0,M0[1,1],0,M0[1,2],0,M0[1,3]], - [M0[2,0],0,M0[2,1],0,M0[2,2],0,M0[2,3],0], - [0,M0[2,0],0,M0[2,1],0,M0[2,2],0,M0[2,3]], - [M0[3,0],0,M0[3,1],0,M0[3,2],0,M0[3,3],0], - [0,M0[3,0],0,M0[3,1],0,M0[3,2],0,M0[3,3]]]) - - M=MM0*block_matrix(1,2,[M_left,M_right]) - - #A,B,C,D=bloc_decomposition(M) - - #M=complete_symplectic_matrix_dim4(C,D) - - #print(M.det()) - #print(M) - - A,B,C,D=bloc_decomposition(M) - if B.transpose()*A!=A.transpose()*B: - print("B^T*A!=A^T*B") - if C.transpose()*D!=D.transpose()*C: - print("C^T*D!=D^T*C") - if A.transpose()*D-B.transpose()*C!=identity_matrix(4): - print("A^T*D-B^T*C!=I") - assert is_symplectic_matrix_dim4(M) - - return M - -# ============================================================================ # -# Functions for the class KaniEndoHalf (isogeny chain decomposed in two) # -# ============================================================================ # - -def complete_kernel_matrix_F1(a1,a2,q,f): - r"""Computes the symplectic base change matrix of a symplectic basis of the form (*,B_Kp1) - in the symplectic basis of E1^2*E2^2[2**f] given by: - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)], - [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]] - where: - - B_Kp1 is a basis of an isotropic subgroup of E1^2*E2^2[2**f] lying above ker(F1). - By convention B_Kp1=[(\tilde{\alpha}_1(P1,0),\Sigma(P1,0)), - (\tilde{\alpha}_1(P2,0),\Sigma(P2,0)), - (\tilde{\alpha}_1(0,P1),\Sigma(0,P1)), - (\tilde{\alpha}_1(0,P2),\Sigma(0,P2))] - - lamb is the inverse of q modulo 2**f. - - (P1,P2) is the canonical basis of E1[2**f]. - - (R1,R2) is the image of (P1,P2) by sigma. - - Input: - - a1, a2, q: Integers such that q+a1**2+a2**2=2**e. - - f: integer determining the accessible 2-torsion in E1 (E1[2**f]). - - Output: - - M: symplectic base change matrix of (*,B_Kp1) in B1. - """ - N=2**f - ZN=Integers(N) - - C=matrix(ZN,[[a1,0,-a2,0], - [a2,0,a1,0], - [1,0,0,0], - [0,0,1,0]]) - - D=matrix(ZN,[[0,a1,0,-a2], - [0,a2,0,a1], - [0,q,0,0], - [0,0,0,q]]) - - assert C.transpose()*D==D.transpose()*C - - M=complete_symplectic_matrix_dim4(C,D,N) - - assert is_symplectic_matrix_dim4(M) - - return M - -def complete_kernel_matrix_F2_dual(a1,a2,q,f): - r"""Computes the symplectic base change matrix of a symplectic basis of the form (*,B_Kp2) - in the symplectic basis of E1^2*E2^2[2**f] given by: - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)], - [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]] - where: - - B_Kp2 is a basis of an isotropic subgroup of E1^2*E2^2[2**f] lying above ker(\tilde{F2}). - By convention B_Kp2=[(\alpha_1(P1,0),-\Sigma(P1,0)), - (\alpha_1(P2,0),-\Sigma(P2,0)), - (\alpha_1(0,P1),-\Sigma(0,P1)), - (\alpha_1(0,P2),-\Sigma(0,P2))]. - - lamb is the inverse of q modulo 2**f. - - (P1,P2) is the canonical basis of E1[2**f]. - - (R1,R2) is the image of (P1,P2) by sigma. - - Input: - - a1, a2, q: Integers such that q+a1**2+a2**2=2**e. - - f: integer determining the accessible 2-torsion in E1 (E1[2**f]). - - Output: - - M: symplectic base change matrix of (*,B_Kp2) in B1. - """ - N=2**f - ZN=Integers(N) - - C=matrix(ZN,[[a1,0,a2,0], - [-a2,0,a1,0], - [-1,0,0,0], - [0,0,-1,0]]) - - D=matrix(ZN,[[0,a1,0,a2], - [0,-a2,0,a1], - [0,-q,0,0], - [0,0,0,-q]]) - - - - M=complete_symplectic_matrix_dim4(C,D,N) - - assert is_symplectic_matrix_dim4(M) - - return M - -def matrix_F_dual(a1,a2,q,f): - r""" Computes the matrix of \tilde{F}(B1) in B1, where: - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)], - [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]] - as defined in complete_kernel_matrix_F2_dual. - - Input: - - a1, a2, q: Integers such that q+a1**2+a2**2=2**e. - - f: integer determining the accessible 2-torsion in E1 (E1[2**f]). - - Output: - - M: symplectic base change matrix of \tilde{F}(B1) in B1. - """ - N=2**f - ZN=Integers(N) - - M=matrix(ZN,[[a1,-a2,-q,0,0,0,0,0], - [a2,a1,0,-q,0,0,0,0], - [1,0,a1,a2,0,0,0,0], - [0,1,-a2,a1,0,0,0,0], - [0,0,0,0,a1,-a2,-1,0], - [0,0,0,0,a2,a1,0,-1], - [0,0,0,0,q,0,a1,a2], - [0,0,0,0,0,q,-a2,a1]]) - - return M - -def matrix_F(a1,a2,q,f): - r""" Computes the matrix of F(B1) in B1, where: - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)], - [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]] - as defined in complete_kernel_matrix_F1. - - Input: - - a1, a2, q: Integers such that q+a1**2+a2**2=2**e. - - f: integer determining the accessible 2-torsion in E1 (E1[2**f]). - - Output: - - M: symplectic base change matrix of \tilde{F}(B1) in B1. - """ - N=2**f - ZN=Integers(N) - - M=matrix(ZN,[[a1,a2,q,0,0,0,0,0], - [-a2,a1,0,q,0,0,0,0], - [-1,0,a1,-a2,0,0,0,0], - [0,-1,a2,a1,0,0,0,0], - [0,0,0,0,a1,a2,1,0], - [0,0,0,0,-a2,a1,0,1], - [0,0,0,0,-q,0,a1,-a2], - [0,0,0,0,0,-q,a2,a1]]) - - return M - -def starting_two_symplectic_matrices(a1,a2,q,f): - r""" - Computes the matrices of two symplectic basis of E1^2*E2^2[2**f] given - by (*,B_Kp1) and (*,B_Kp2) in the basis - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)], - [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]] - as defined in complete_kernel_matrix_F1. - - Input: - - a1, a2, q: Integers such that q+a1**2+a2**2=2**e. - - f: integer determining the accessible 2-torsion in E1 (E1[2**f]). - - Output: - - M1, M2: the symplectic base change matrices of (*,B_Kp1) and (*,B_Kp2) in B1. - """ - M1_0=complete_kernel_matrix_F1(a1,a2,q,f) - MatF=matrix_F(a1,a2,q,f) - - # Matrix of an isotropic subgroup of E1^2*E2^2[2**f] lying above ker(\tilde{F2}). - Block_right2=MatF*M1_0[:,[0,1,2,3]] - - N=ZZ(2**f) - - C=Block_right2[[0,1,2,3],:] - D=Block_right2[[4,5,6,7],:] - - assert C.transpose()*D==D.transpose()*C - - # Matrix of the resulting symplectic basis (*,B_Kp2) - M2=complete_symplectic_matrix_dim4(C,D,N) - - MatF_dual=matrix_F_dual(a1,a2,q,f) - - Block_right1=MatF_dual*M2[:,[0,1,2,3]] - - C=Block_right1[[0,1,2,3],:] - D=Block_right1[[4,5,6,7],:] - - A=M1_0[[0,1,2,3],[0,1,2,3]] - B=M1_0[[4,5,6,7],[0,1,2,3]] - - assert C.transpose()*D==D.transpose()*C - assert B.transpose()*A==A.transpose()*B - - # Matrix of the resulting symplectic basis (*,B_Kp1) - M1=block_matrix(1,2,[M1_0[:,[0,1,2,3]],-Block_right1]) - - assert is_symplectic_matrix_dim4(M1) - - A,B,C,D=bloc_decomposition(M1) - a2_div=a2 - m=0 - while a2_div%2==0: - m+=1 - a2_div=a2_div//2 - for j in range(4): - assert (-D[0,j]*a1-C[0,j]*a2-D[2,j])%2**m==0 - assert (C[0,j]*a1-D[0,j]*a2+C[2,j]*q)%2**m==0 - assert (-D[1,j]*a1-C[1,j]*a2-D[3,j])%2**m==0 - assert (C[1,j]*a1-D[1,j]*a2+C[3,j]*q)%2**m==0 - - return M1, M2 - -def gluing_base_change_matrix_dim2_F1(a1,a2,q): - r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of E1*E2[4] - given by the kernel of the dimension 2 gluing isogeny: - B_K4=2**(f-2)[([a1]P1-[a2]P2,R1),([a1]P2+[a2]P1,R2)] - in the basis $2**(f-2)*B1$ given by: - B1:=[[(P1,0),(0,R1)],[(P2,0),(0,[1/q]*R2)]] - where: - - lamb is the inverse of q modulo 2**f. - - (P1,P2) is the canonical basis of E1[2**f]. - - (R1,R2) is the image of (P1,P2) by sigma. - - Input: - - a1, q: integers. - - Output: - - M: symplectic base change matrix of (*,B_K4) in 2**(f-2)*B1. - """ - return gluing_base_change_matrix_dim2(a1,a2,q) - -def gluing_base_change_matrix_dim2_dim4_F1(a1,a2,q,m,M1): - r"""Computes the symplectic base change matrix of the symplectic basis Bp of Am*Am[4] induced - by the image of the symplectic basis (x_1, ..., x_4, y_1, ..., y_4) of E1^2*E2^2[2**(e1+2)] - adapted to ker(F1)=[4]<y_1, ..., y_4> in the basis associated to the product theta-structure - of level 2 of Am*Am: - - B:=[(S1,0),(S2,0),(0,S1),(0,S2),(T1,0),(T2,0),(0,T1),(0,T2)] - - where: - - (P1,Q1) is the canonical basis of E1[2**f]. - - (R2,S2) is the image of (P1,P2) by sigma. - - Phi is the 2**m-isogeny E1*E2-->Am (m first steps of the chain in dimension 2). - - S1=[2**e]Phi([lamb]Q1,[a]sigma(P1)+[b]sigma(Q1)). - - S2=[2**e]Phi([mu]P1,[c]sigma(P1)+[d]sigma(Q1)). - - T1=[2**(e-m)]Phi([a1]P1-[a2]Q1,sigma(P1)). - - T2=[2**(e-m)]Phi([a1]Q1+[a2]P1,sigma(Q1)). - - (S1,S2,T1,T2) is induced by the image by Phi of a symplectic basis of E1*E2[2**(m+2)] lying - above the symplectic basis of E1*E2[4] outputted by gluing_base_change_matrix_dim2. - - INPUT: - - a1, a2, q: integers. - - m: integer (number of steps in dimension 2 and 2-adic valuation of a2). - - M1: matrix of (x_1, ..., x_4, y_1, ..., y_4) in the symplectic basis of E1^2*E2^2[2**(e1+2)] - given by: - - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R2,0),(0,0,0,R2)], - [(Q1,0,0,0),(0,Q1,0,0),(0,0,[1/q]*S2,0),(0,0,0,[1/q]*S2)]] - - OUTPUT: - - M: symplectic base change matrix of Bp in B. - """ - - inv_a1=inverse_mod(a1,2**(m+2)) - inv_q=inverse_mod(q,2**(m+2)) - lamb=ZZ(2**(m+1)) - mu=ZZ((1-2**(m+1)*q)*inv_a1) - a=ZZ(2**(m+1)*a2*inv_q) - bq=ZZ((-1-2**(m+1)*a1)) - c=ZZ(2**(m+1)) - dq=-ZZ(mu*a2) - - Z4=Integers(4) - - A,B,C,D=bloc_decomposition(M1) - - Ap=matrix(Z4,[[ZZ(-B[0,j]*a1-A[0,j]*a2-B[2,j]) for j in range(4)], - [ZZ(A[0,j]*a1-B[0,j]*a2+A[2,j]*q) for j in range(4)], - [ZZ(-B[1,j]*a1-A[1,j]*a2-B[3,j]) for j in range(4)], - [ZZ(A[1,j]*a1-B[1,j]*a2+A[3,j]*q) for j in range(4)]]) - - Bp=matrix(Z4,[[ZZ(2**m*(B[2,j]*a-A[0,j]*lamb-A[2,j]*bq)) for j in range(4)], - [ZZ(2**m*(B[2,j]*c+B[0,j]*mu-A[2,j]*dq)) for j in range(4)], - [ZZ(2**m*(B[3,j]*a-A[1,j]*lamb-A[3,j]*bq)) for j in range(4)], - [ZZ(2**m*(B[3,j]*c+B[1,j]*mu-A[3,j]*dq)) for j in range(4)]]) - - Cp=matrix(Z4,[[ZZ(ZZ(-D[0,j]*a1-C[0,j]*a2-D[2,j])//(2**m)) for j in range(4)], - [ZZ(ZZ(C[0,j]*a1-D[0,j]*a2+C[2,j]*q)//2**m) for j in range(4)], - [ZZ(ZZ(-D[1,j]*a1-C[1,j]*a2-D[3,j])//2**m) for j in range(4)], - [ZZ(ZZ(C[1,j]*a1-D[1,j]*a2+C[3,j]*q)//2**m) for j in range(4)]]) - - Dp=matrix(Z4,[[ZZ(D[2,j]*a-C[0,j]*lamb-C[2,j]*bq) for j in range(4)], - [ZZ(D[0,j]*mu+D[2,j]*c-C[2,j]*dq) for j in range(4)], - [ZZ(D[3,j]*a-C[1,j]*lamb-C[3,j]*bq) for j in range(4)], - [ZZ(D[1,j]*mu+D[3,j]*c-C[3,j]*dq) for j in range(4)]]) - - M=block_matrix(2,2,[[Ap,Cp],[Bp,Dp]]) - - assert is_symplectic_matrix_dim4(M) - - return M - -def gluing_base_change_matrix_dim2_F2(a1,a2,q): - r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of E1*E2[4] - given by the kernel of the dimension 2 gluing isogeny: - B_K4=2**(f-2)[([a1]P1-[a2]P2,R1),([a1]P2+[a2]P1,R2)] - in the basis $2**(f-2)*B1$ given by: - B1:=[[(P1,0),(0,R1)],[(P2,0),(0,[1/q]*R2)]] - where: - - lamb is the inverse of q modulo 2**f. - - (P1,P2) is the canonical basis of E1[2**f]. - - (R1,R2) is the image of (P1,P2) by sigma. - - Input: - - a1, q: integers. - - Output: - - M: symplectic base change matrix of (*,B_K4) in 2**(f-2)*B1. - """ - - Z4=Integers(4) - - mu=inverse_mod(a1,4) - - A=matrix(Z4,[[0,mu], - [0,0]]) - B=matrix(Z4,[[0,0], - [1,-ZZ(mu*a2)]]) - - C=matrix(Z4,[[ZZ(a1),-ZZ(a2)], - [-1,0]]) - D=matrix(Z4,[[ZZ(a2),ZZ(a1)], - [0,-ZZ(q)]]) - - M=block_matrix([[A,C],[B,D]]) - - assert is_symplectic_matrix_dim2(M) - - return M - -def gluing_base_change_matrix_dim2_dim4_F2(a1,a2,q,m,M2): - r"""Computes the symplectic base change matrix of the symplectic basis Bp of Am*Am[4] induced - by the image of the symplectic basis (x_1, ..., x_4, y_1, ..., y_4) of E1^2*E2^2[2**(e1+2)] - adapted to ker(F1)=[4]<y_1, ..., y_4> in the basis associated to the product theta-structure - of level 2 of Am*Am: - - B:=[(S1,0),(S2,0),(0,S1),(0,S2),(T1,0),(T2,0),(0,T1),(0,T2)] - - where: - - (P1,Q1) is the canonical basis of E1[2**f]. - - (R2,S2) is the image of (P1,P2) by sigma. - - Phi is the 2**m-isogeny E1*E2-->Am (m first steps of the chain in dimension 2). - - S1=[2**e]Phi([lamb]Q1,[a]sigma(P1)+[b]sigma(Q1)). - - S2=[2**e]Phi([mu]P1,[c]sigma(P1)+[d]sigma(Q1)). - - T1=[2**(e-m)]Phi([a1]P1-[a2]Q1,sigma(P1)). - - T2=[2**(e-m)]Phi([a1]Q1+[a2]P1,sigma(Q1)). - - (S1,S2,T1,T2) is induced by the image by Phi of a symplectic basis of E1*E2[2**(m+2)] lying - above the symplectic basis of E1*E2[4] outputted by gluing_base_change_matrix_dim2. - - INPUT: - - a1, a2, q: integers. - - m: integer (number of steps in dimension 2 and 2-adic valuation of a2). - - M2: matrix of (x_1, ..., x_4, y_1, ..., y_4) in the symplectic basis of E1^2*E2^2[2**(e1+2)] - given by: - - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R2,0),(0,0,0,R2)], - [(Q1,0,0,0),(0,Q1,0,0),(0,0,[1/q]*S2,0),(0,0,0,[1/q]*S2)]] - - OUTPUT: - - M: symplectic base change matrix of Bp in B. - """ - - inv_a1=inverse_mod(a1,2**(m+2)) - inv_q=inverse_mod(q,2**(m+2)) - lamb=ZZ(2**(m+1)) - mu=ZZ((1+2**(m+1)*q)*inv_a1) - a=ZZ(2**(m+1)*a2*inv_q) - bq=ZZ((1+2**(m+1)*a1)) - c=ZZ(2**(m+1)) - dq=-ZZ(mu*a2) - - Z4=Integers(4) - - A,B,C,D=bloc_decomposition(M2) - - Ap=matrix(Z4,[[ZZ(-B[0,j]*a1+A[0,j]*a2+B[2,j]) for j in range(4)], - [ZZ(A[0,j]*a1+B[0,j]*a2-A[2,j]*q) for j in range(4)], - [ZZ(-B[1,j]*a1+A[1,j]*a2+B[3,j]) for j in range(4)], - [ZZ(A[1,j]*a1+B[1,j]*a2-A[3,j]*q) for j in range(4)]]) - - Bp=matrix(Z4,[[ZZ(2**m*(B[2,j]*a-A[0,j]*lamb-A[2,j]*bq)) for j in range(4)], - [ZZ(2**m*(B[2,j]*c+B[0,j]*mu-A[2,j]*dq)) for j in range(4)], - [ZZ(2**m*(B[3,j]*a-A[1,j]*lamb-A[3,j]*bq)) for j in range(4)], - [ZZ(2**m*(B[3,j]*c+B[1,j]*mu-A[3,j]*dq)) for j in range(4)]]) - - Cp=matrix(Z4,[[ZZ(ZZ(-D[0,j]*a1+C[0,j]*a2+D[2,j])//(2**m)) for j in range(4)], - [ZZ(ZZ(C[0,j]*a1+D[0,j]*a2-C[2,j]*q)//2**m) for j in range(4)], - [ZZ(ZZ(-D[1,j]*a1+C[1,j]*a2+D[3,j])//2**m) for j in range(4)], - [ZZ(ZZ(C[1,j]*a1+D[1,j]*a2-C[3,j]*q)//2**m) for j in range(4)]]) - - Dp=matrix(Z4,[[ZZ(D[2,j]*a-C[0,j]*lamb-C[2,j]*bq) for j in range(4)], - [ZZ(D[0,j]*mu+D[2,j]*c-C[2,j]*dq) for j in range(4)], - [ZZ(D[3,j]*a-C[1,j]*lamb-C[3,j]*bq) for j in range(4)], - [ZZ(D[1,j]*mu+D[3,j]*c-C[3,j]*dq) for j in range(4)]]) - - M=block_matrix(2,2,[[Ap,Cp],[Bp,Dp]]) - - assert is_symplectic_matrix_dim4(M) - - return M - -def point_matrix_product(M,L_P,J=None,modulus=None): - r""" - Input: - - M: matrix with (modular) integer values. - - L_P: list of elliptic curve points [P1,P2,R1,R2] such that the rows of M correspond to the vectors - (P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1),(P2,0,0,0),(0,P2,0,0),(0,0,R2,0),(0,0,0,R2). - - J: list of column indices (default, all the columns). - - modulus: order of points in L_P (default, None). - - Output: - - L_ret: list of points corresponding to the columns of M with indices in J. - """ - if modulus==None: - M1=M - else: - Zmod=Integers(modulus) - M1=matrix(Zmod,M) - - if J==None: - J=range(M1.ncols()) - - L_ret=[] - for j in J: - L_ret.append(TuplePoint(M1[0,j]*L_P[0]+M1[4,j]*L_P[1],M1[1,j]*L_P[0]+M1[5,j]*L_P[1], - M1[2,j]*L_P[2]+M1[6,j]*L_P[3],M1[3,j]*L_P[2]+M1[7,j]*L_P[3])) - - return L_ret - - -def kernel_basis(M,ei,mP1,mP2,mR1,mlambR2): - r""" - Input: - - M: matrix of a symplectic basis in the basis - B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)], - [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]] - as defined in complete_kernel_matrix_F1. - - ei: length of F1 or F2. - - mP1,mP2: canonical basis (P1,P2) of E1[2**f] multiplied by m:=2**(f-ei-2). - - mR1,mlambR2: (mR1,mlambR2)=(m*sigma(P1),m*sigma(P2)), where lamb is the - inverse of q=deg(sigma) modulo 2**f. - - Output: - - Basis of the second symplectic subgroup basis of E1^2*E2^2[2**(ei+2)] induced by M. - """ - modulus=2**(ei+2) - - return point_matrix_product(M,[mP1,mP2,mR1,mlambR2],[4,5,6,7],modulus) - -def base_change_canonical_dim4(P1,P2,R1,R2,q,f,e1,e2): - lamb=inverse_mod(q,2**f) - - lambR2=lamb*R2 - - P1_doubles=[P1] - P2_doubles=[P2] - R1_doubles=[R1] - lambR2_doubles=[lambR2] - - for i in range(f-2): - P1_doubles.append(2*P1_doubles[-1]) - P2_doubles.append(2*P2_doubles[-1]) - R1_doubles.append(2*R1_doubles[-1]) - lambR2_doubles.append(2*lambR2_doubles[-1]) - - # Constructing canonical basis of E1[4] and E2[4]. - _,_,T1,T2,MT=make_canonical(P1_doubles[-1],P2_doubles[-1],4,preserve_pairing=True) - _,_,U1,U2,MU=make_canonical(R1_doubles[-1],lambR2_doubles[-1],4,preserve_pairing=True) - - # Base change matrix of the symplectic basis 2**(f-2)*B1 of E1^2*E2^2[4] in the basis: - # B0:=[[(T1,0,0,0),(0,T1,0,0),(0,0,U1,0),(0,0,0,U1)], - #[(T2,0,0,0),(0,T2,0,0),(0,0,U2,0),(0,0,0,U2)]] - # where B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)], - #[(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]] - Z4=Integers(4) - M0=matrix(Z4,[[MT[0,0],0,0,0,MT[1,0],0,0,0], - [0,MT[0,0],0,0,0,MT[1,0],0,0], - [0,0,MU[0,0],0,0,0,MU[1,0],0], - [0,0,0,MU[0,0],0,0,0,MU[1,0]], - [MT[0,1],0,0,0,MT[1,1],0,0,0], - [0,MT[0,1],0,0,0,MT[1,1],0,0], - [0,0,MU[0,1],0,0,0,MU[1,1],0], - [0,0,0,MU[0,1],0,0,0,MU[1,1]]]) - - return P1_doubles,P2_doubles,R1_doubles,lambR2_doubles,T1,T2,U1,U2,MT,MU,M0 |