Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/basis_change
diff options
context:
space:
mode:
authorPierrick-Dartois <pierrickdartois@icloud.com>2025-05-22 18:51:58 +0200
committerPierrick-Dartois <pierrickdartois@icloud.com>2025-05-22 18:51:58 +0200
commitcb6080eaa4f326d9fce5f0a9157be46e91d55e09 (patch)
tree4d080ade8db9faa0da5268ab420dad2b02a4e248 /theta_lib/basis_change
parentd40de259097c5e8d8fd35539560ca7c3d47523e7 (diff)
downloadpegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.tar.gz
pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.tar.bz2
pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.zip
Clean up PEGASIS submodule inclusion
Diffstat (limited to 'theta_lib/basis_change')
-rw-r--r--theta_lib/basis_change/base_change_dim2.py150
-rw-r--r--theta_lib/basis_change/base_change_dim4.py152
-rw-r--r--theta_lib/basis_change/canonical_basis_dim1.py76
-rw-r--r--theta_lib/basis_change/kani_base_change.py975
4 files changed, 0 insertions, 1353 deletions
diff --git a/theta_lib/basis_change/base_change_dim2.py b/theta_lib/basis_change/base_change_dim2.py
deleted file mode 100644
index 4994529..0000000
--- a/theta_lib/basis_change/base_change_dim2.py
+++ /dev/null
@@ -1,150 +0,0 @@
-from sage.all import *
-
-import itertools
-
-def complete_symplectic_matrix_dim2(C, D, n=4):
- Zn = Integers(n)
-
- # Compute first row
- F = D.stack(-C).transpose()
- xi = F.solve_right(vector(Zn, [1, 0]))
-
- # Rearrange TODO: why?
- v = vector(Zn, [xi[2], xi[3], -xi[0], -xi[1]])
-
- # Compute second row
- F2 = F.stack(v)
- yi = F2.solve_right(vector(Zn, [0, 1, 0]))
- M = Matrix(Zn,
- [
- [xi[0], yi[0], C[0, 0], C[0, 1]],
- [xi[1], yi[1], C[1, 0], C[1, 1]],
- [xi[2], yi[2], D[0, 0], D[0, 1]],
- [xi[3], yi[3], D[1, 0], D[1, 1]],
- ],
- )
-
- return M
-
-def block_decomposition(M):
- """
- Given a 4x4 matrix, return the four 2x2 matrices as blocks
- """
- A = M.matrix_from_rows_and_columns([0, 1], [0, 1])
- B = M.matrix_from_rows_and_columns([2, 3], [0, 1])
- C = M.matrix_from_rows_and_columns([0, 1], [2, 3])
- D = M.matrix_from_rows_and_columns([2, 3], [2, 3])
- return A, B, C, D
-
-def is_symplectic_matrix_dim2(M):
- A, B, C, D = block_decomposition(M)
- if B.transpose() * A != A.transpose() * B:
- return False
- if C.transpose() * D != D.transpose() * C:
- return False
- if A.transpose() * D - B.transpose() * C != identity_matrix(2):
- return False
- return True
-
-def base_change_theta_dim2(M, zeta):
- r"""
- Computes the matrix N (in row convention) of the new level 2
- theta coordinates after a symplectic base change of A[4] given
- by M\in Sp_4(Z/4Z). We have:
- (theta'_i)=N*(theta_i)
- where the theta'_i are the new theta coordinates and theta_i,
- the theta coordinates induced by the product theta structure.
- N depends on the fourth root of unity zeta=e_4(Si,Ti) (where
- (S0,S1,T0,T1) is a symplectic basis if A[4]).
-
- Inputs:
- - M: symplectic base change matrix.
- - zeta: a primitive 4-th root of unity induced by the Weil-pairings
- of the symplectic basis of A[4].
-
- Output: Matrix N of base change of theta-coordinates.
- """
- # Split 4x4 matrix into 2x2 blocks
- A, B, C, D = block_decomposition(M)
-
- # Initialise N to 4x4 zero matrix
- N = [[0 for _ in range(4)] for _ in range(4)]
-
- def choose_non_vanishing_index(C, D, zeta):
- """
- Choice of reference non-vanishing index (ir0,ir1)
- """
- for ir0, ir1 in itertools.product([0, 1], repeat=2):
- L = [0, 0, 0, 0]
- for j0, j1 in itertools.product([0, 1], repeat=2):
- k0 = C[0, 0] * j0 + C[0, 1] * j1
- k1 = C[1, 0] * j0 + C[1, 1] * j1
-
- l0 = D[0, 0] * j0 + D[0, 1] * j1
- l1 = D[1, 0] * j0 + D[1, 1] * j1
-
- e = -(k0 + 2 * ir0) * l0 - (k1 + 2 * ir1) * l1
- L[ZZ(k0 + ir0) % 2 + 2 * (ZZ(k1 + ir1) % 2)] += zeta ** (ZZ(e))
-
- # Search if any L value in L is not zero
- if any([x != 0 for x in L]):
- return ir0, ir1
-
- ir0, ir1 = choose_non_vanishing_index(C, D, zeta)
-
- for i0, i1, j0, j1 in itertools.product([0, 1], repeat=4):
- k0 = A[0, 0] * i0 + A[0, 1] * i1 + C[0, 0] * j0 + C[0, 1] * j1
- k1 = A[1, 0] * i0 + A[1, 1] * i1 + C[1, 0] * j0 + C[1, 1] * j1
-
- l0 = B[0, 0] * i0 + B[0, 1] * i1 + D[0, 0] * j0 + D[0, 1] * j1
- l1 = B[1, 0] * i0 + B[1, 1] * i1 + D[1, 0] * j0 + D[1, 1] * j1
-
- e = i0 * j0 + i1 * j1 - (k0 + 2 * ir0) * l0 - (k1 + 2 * ir1) * l1
- N[i0 + 2 * i1][ZZ(k0 + ir0) % 2 + 2 * (ZZ(k1 + ir1) % 2)] += zeta ** (ZZ(e))
-
- return Matrix(N)
-
-def montgomery_to_theta_matrix_dim2(zero12,N=identity_matrix(4),return_null_point=False):
- r"""
- Computes the matrix that transforms Montgomery coordinates on E1*E2 into theta coordinates
- with respect to a certain theta structure given by a base change matrix N.
-
- Input:
- - zero12: theta-null point for the product theta structure on E1*E2[2]:
- zero12=[zero1[0]*zero2[0],zero1[1]*zero2[0],zero1[0]*zero2[1],zero1[1]*zero2[1]],
- where the zeroi are the theta-null points of Ei for i=1,2.
- - N: base change matrix from the product theta-structure.
- - return_null_point: True if the theta-null point obtained after applying N to zero12 is returned.
-
- Output:
- - Matrix for the change of coordinates:
- (X1*X2,Z1*X2,X1*Z2,Z1*Z2)-->(theta_00,theta_10,theta_01,theta_11).
- - If return_null_point, the theta-null point obtained after applying N to zero12 is returned.
- """
-
- Fp2=zero12[0].parent()
-
- M=zero_matrix(Fp2,4,4)
-
- for i in range(4):
- for j in range(4):
- M[i,j]=N[i,j]*zero12[j]
-
- M2=[]
- for i in range(4):
- M2.append([M[i,0]+M[i,1]+M[i,2]+M[i,3],-M[i,0]-M[i,1]+M[i,2]+M[i,3],-M[i,0]+M[i,1]-M[i,2]+M[i,3],M[i,0]-M[i,1]-M[i,2]+M[i,3]])
-
- if return_null_point:
- null_point=[M[i,0]+M[i,1]+M[i,2]+M[i,3] for i in range(4)]
- return Matrix(M2), null_point
- else:
- return Matrix(M2)
-
-def apply_base_change_theta_dim2(N,P):
- Q=[]
- for i in range(4):
- Q.append(0)
- for j in range(4):
- Q[i]+=N[i,j]*P[j]
- return Q
-
diff --git a/theta_lib/basis_change/base_change_dim4.py b/theta_lib/basis_change/base_change_dim4.py
deleted file mode 100644
index aaf685f..0000000
--- a/theta_lib/basis_change/base_change_dim4.py
+++ /dev/null
@@ -1,152 +0,0 @@
-from sage.all import *
-import itertools
-
-from ..theta_structures.theta_helpers_dim4 import multindex_to_index
-
-def bloc_decomposition(M):
- I1=[0,1,2,3]
- I2=[4,5,6,7]
-
- A=M[I1,I1]
- B=M[I2,I1]
- C=M[I1,I2]
- D=M[I2,I2]
-
- return A,B,C,D
-
-def mat_prod_vect(A,I):
- J=[]
- for i in range(4):
- J.append(0)
- for k in range(4):
- J[i]+=A[i,k]*I[k]
- return tuple(J)
-
-def add_tuple(I,J):
- K=[]
- for k in range(4):
- K.append(I[k]+J[k])
- return tuple(K)
-
-def scal_prod_tuple(I,J):
- s=0
- for k in range(4):
- s+=I[k]*J[k]
- return s
-
-def red_mod_2(I):
- J=[]
- for x in I:
- J.append(ZZ(x)%2)
- return tuple(J)
-
-def choose_non_vanishing_index(C,D,zeta):
- for I0 in itertools.product([0,1],repeat=4):
- L=[0 for k in range(16)]
- for J in itertools.product([0,1],repeat=4):
- CJ=mat_prod_vect(C,J)
- DJ=mat_prod_vect(D,J)
- e=-scal_prod_tuple(CJ,DJ)-2*scal_prod_tuple(I0,DJ)
-
- I0pDJ=add_tuple(I0,CJ)
-
- L[multindex_to_index(red_mod_2(I0pDJ))]+=zeta**(ZZ(e))
- for k in range(16):
- if L[k]!=0:
- return I0,L
-
-
-def base_change_theta_dim4(M,zeta):
-
- Z4=Integers(4)
- A,B,C,D=bloc_decomposition(M.change_ring(Z4))
-
- I0,L0=choose_non_vanishing_index(C,D,zeta)
-
-
- N=[L0]+[[0 for j in range(16)] for i in range(15)]
- for I in itertools.product([0,1],repeat=4):
- if I!=(0,0,0,0):
- AI=mat_prod_vect(A,I)
- BI=mat_prod_vect(B,I)
- for J in itertools.product([0,1],repeat=4):
- CJ=mat_prod_vect(C,J)
- DJ=mat_prod_vect(D,J)
-
- AIpCJ=add_tuple(AI,CJ)
- BIpDJ=add_tuple(BI,DJ)
-
- e=scal_prod_tuple(I,J)-scal_prod_tuple(AIpCJ,BIpDJ)-2*scal_prod_tuple(I0,BIpDJ)
- N[multindex_to_index(I)][multindex_to_index(red_mod_2(add_tuple(AIpCJ,I0)))]+=zeta**(ZZ(e))
-
- Fp2=zeta.parent()
- return matrix(Fp2,N)
-
-def apply_base_change_theta_dim4(N,P):
- Q=[]
- for i in range(16):
- Q.append(0)
- for j in range(16):
- Q[i]+=N[i,j]*P[j]
- return Q
-
-def complete_symplectic_matrix_dim4(C,D,n=4):
- Zn=Integers(n)
-
- Col_I4=[matrix(Zn,[[1],[0],[0],[0]]),matrix(Zn,[[0],[1],[0],[0],[0]]),
- matrix(Zn,[[0],[0],[1],[0],[0],[0]]),matrix(Zn,[[0],[0],[0],[1],[0],[0],[0]])]
-
- L_DC=block_matrix([[D.transpose(),-C.transpose()]])
- Col_AB_i=L_DC.solve_right(Col_I4[0])
- A_t=Col_AB_i[[0,1,2,3],0].transpose()
- B_t=Col_AB_i[[4,5,6,7],0].transpose()
-
- for i in range(1,4):
- F=block_matrix(2,1,[L_DC,block_matrix(1,2,[B_t,-A_t])])
- Col_AB_i=F.solve_right(Col_I4[i])
- A_t=block_matrix(2,1,[A_t,Col_AB_i[[0,1,2,3],0].transpose()])
- B_t=block_matrix(2,1,[B_t,Col_AB_i[[4,5,6,7],0].transpose()])
-
- A=A_t.transpose()
- B=B_t.transpose()
-
- M=block_matrix([[A,C],[B,D]])
-
- return M
-
-def random_symmetric_matrix(n,r):
- Zn=Integers(n)
- M=zero_matrix(Zn,r,r)
- for i in range(r):
- M[i,i]=randint(0,n-1)
- for i in range(r):
- for j in range(i+1,r):
- M[i,j]=randint(0,n-1)
- M[j,i]=M[i,j]
- return M
-
-
-def random_symplectic_matrix(n):
- Zn=Integers(n)
-
- C=random_symmetric_matrix(n,4)
- Cp=random_symmetric_matrix(n,4)
-
- A=random_matrix(Zn,4,4)
- while not A.is_invertible():
- A=random_matrix(Zn,4,4)
-
- tA_inv=A.inverse().transpose()
- ACp=A*Cp
- return block_matrix([[ACp,A],[C*ACp-tA_inv,C*A]])
-
-def is_symplectic_matrix_dim4(M):
- A,B,C,D=bloc_decomposition(M)
- if B.transpose()*A!=A.transpose()*B:
- return False
- if C.transpose()*D!=D.transpose()*C:
- return False
- if A.transpose()*D-B.transpose()*C!=identity_matrix(4):
- return False
- return True
-
diff --git a/theta_lib/basis_change/canonical_basis_dim1.py b/theta_lib/basis_change/canonical_basis_dim1.py
deleted file mode 100644
index e1c3d1f..0000000
--- a/theta_lib/basis_change/canonical_basis_dim1.py
+++ /dev/null
@@ -1,76 +0,0 @@
-from sage.all import *
-from ..utilities.discrete_log import weil_pairing_pari, discrete_log_pari
-
-def last_four_torsion(E):
- a_inv=E.a_invariants()
- A =a_inv[1]
- if a_inv != (0,A,0,1,0):
- raise ValueError("The elliptic curve E is not in the Montgomery model.")
- y2=A-2
- y=y2.sqrt()
- return E([-1,y,1])
-
-
-def make_canonical(P,Q,A,preserve_pairing=False):
- r"""
- Input:
- - P,Q: a basis of E[A].
- - A: an integer divisible by 4.
- - preserve_pairing: boolean indicating if we want to preserve pairing at level 4.
-
- Output:
- - P1,Q1: basis of E[A].
- - U1,U2: basis of E[4] induced by (P1,Q1) ((A//4)*P1=U1, (A//4)*Q1=U2) such that U2[0]=-1
- and e_4(U1,U2)=i if not preserve_pairing and e_4(U1,U2)=e_4((A//4)*P,(A//4)*Q) if preserve_pairing.
- - M: base change matrix (in row convention) from (P1,Q1) to (P,Q).
-
- We say that (U1,U2) is canonical and that (P1,Q1) induces or lies above a canonical basis.
- """
- E=P.curve()
- Fp2=E.base_ring()
- i=Fp2.gen()
-
- assert i**2==-1
-
- T2=last_four_torsion(E)
- V1=(A//4)*P
- V2=(A//4)*Q
- U1=V1
- U2=V2
-
- a1=discrete_log_pari(weil_pairing_pari(U1,T2,4),i,4)
- b1=discrete_log_pari(weil_pairing_pari(U2,T2,4),i,4)
-
- if a1%2!=0:
- c1=inverse_mod(a1,4)
- d1=c1*b1
- P1=P
- Q1=Q-d1*P
- U1,U2=U1,U2-d1*U1
- M=matrix(ZZ,[[1,0],[d1,1]])
- else:
- c1=inverse_mod(b1,4)
- d1=c1*a1
- P1=Q
- Q1=P-d1*Q
- U1,U2=U2,U1-d1*U2
- M=matrix(ZZ,[[d1,1],[1,0]])
-
- if preserve_pairing:
- e4=weil_pairing_pari(V1,V2,4)
- else:
- e4=i
-
- if weil_pairing_pari(U1,U2,4)!=e4:
- U2=-U2
- Q1=-Q1
- M[0,1]=-M[0,1]
- M[1,1]=-M[1,1]
-
- assert (A//4)*P1==U1
- assert (A//4)*Q1==U2
- assert weil_pairing_pari(U1,U2,4)==e4
- assert M[0,0]*P1+M[0,1]*Q1==P
- assert M[1,0]*P1+M[1,1]*Q1==Q
-
- return P1,Q1,U1,U2,M
diff --git a/theta_lib/basis_change/kani_base_change.py b/theta_lib/basis_change/kani_base_change.py
deleted file mode 100644
index e6de2e2..0000000
--- a/theta_lib/basis_change/kani_base_change.py
+++ /dev/null
@@ -1,975 +0,0 @@
-from sage.all import *
-from ..basis_change.canonical_basis_dim1 import make_canonical
-from ..basis_change.base_change_dim2 import is_symplectic_matrix_dim2
-from ..basis_change.base_change_dim4 import (
- complete_symplectic_matrix_dim4,
- is_symplectic_matrix_dim4,
- bloc_decomposition,
-)
-from ..theta_structures.Tuple_point import TuplePoint
-
-
-def base_change_canonical_dim2(P1,P2,R1,R2,q,f):
- r"""
-
- Input:
- - P1, P2: basis of E1[2**f].
- - R1, R2: images of P1, P2 by \sigma: E1 --> E2.
- - q: degree of \sigma.
- - f: log_2(order of P1 and P2).
-
- Output:
- - P1_doubles: list of 2**i*P1 for i in {0,...,f-2}.
- - P2_doubles: list of 2**i*P2 for i in {0,...,f-2}.
- - R1_doubles: list of 2**i*R1 for i in {0,...,f-2}.
- - R2_doubles: list of 2**i*R2 for i in {0,...,f-2},
- - T1, T2: canonical basis of E1[4].
- - U1, U2: canonical basis of E2[4].
- - M0: base change matrix of the symplectic basis 2**(f-2)*B1 of E1*E2[4] given by:
- B1:=[[(P1,0),(0,R1)],[(P2,0),(0,lamb*R2)]]
- where lamb is the modular inverse of q mod 2**f, so that:
- e_{2**f}(P1,P2)=e_{2**f}(R1,lamb*R2).
- in the canonical symplectic basis:
- B0:=[[(T1,0),(0,U1)],[(T2,0),(0,U2)]].
- """
- lamb=inverse_mod(q,4)
-
- P1_doubles=[P1]
- P2_doubles=[P2]
- R1_doubles=[R1]
- R2_doubles=[R2]
-
- for i in range(f-2):
- P1_doubles.append(2*P1_doubles[-1])
- P2_doubles.append(2*P2_doubles[-1])
- R1_doubles.append(2*R1_doubles[-1])
- R2_doubles.append(2*R2_doubles[-1])
-
- # Constructing canonical basis of E1[4] and E2[4].
- _,_,T1,T2,MT=make_canonical(P1_doubles[-1],P2_doubles[-1],4,preserve_pairing=True)
- _,_,U1,U2,MU=make_canonical(R1_doubles[-1],lamb*R2_doubles[-1],4,preserve_pairing=True)
-
- Z4=Integers(4)
- M0=matrix(Z4,[[MT[0,0],0,MT[1,0],0],
- [0,MU[0,0],0,MU[1,0]],
- [MT[0,1],0,MT[1,1],0],
- [0,MU[0,1],0,MU[1,1]]])
-
- return P1_doubles,P2_doubles,R1_doubles,R2_doubles,T1,T2,U1,U2,M0
-
-def gluing_base_change_matrix_dim2(a1,a2,q):
- r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of E1*E2[4]
- given by the kernel of the dimension 2 gluing isogeny:
- B_K4=2**(f-2)[([a1]P1-[a2]P2,R1),([a1]P2+[a2]P1,R2)]
- in the basis $2**(f-2)*B1$ given by:
- B1:=[[(P1,0),(0,R1)],[(P2,0),(0,lamb*R2)]]
- where:
- - lamb is the inverse of q modulo 2**f.
- - (P1,P2) is the canonical basis of E1[2**f].
- - (R1,R2) is the image of (P1,P2) by sigma.
-
- Input:
- - a1, q: integers.
-
- Output:
- - M: symplectic base change matrix of (*,B_K4) in 2**(f-2)*B1.
- """
-
- Z4=Integers(4)
-
- mu=inverse_mod(a1,4)
-
- A=matrix(Z4,[[0,mu],
- [0,0]])
- B=matrix(Z4,[[0,0],
- [-1,-ZZ(mu*a2)]])
-
- C=matrix(Z4,[[ZZ(a1),ZZ(a2)],
- [1,0]])
- D=matrix(Z4,[[-ZZ(a2),ZZ(a1)],
- [0,ZZ(q)]])
-
- #M=complete_symplectic_matrix_dim2(C, D, 4)
- M=block_matrix([[A,C],[B,D]])
-
- assert is_symplectic_matrix_dim2(M)
-
- return M
-
-# ============================================== #
-# Functions for the class KaniClapotiIsog #
-# ============================================== #
-
-def clapoti_cob_matrix_dim2(integers):
- gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers
-
- xu = ZZ(xu)
- xv = ZZ(xv)
- Nbk = ZZ(Nbk)
- Nck = ZZ(Nck)
- u = ZZ(gu*(xu**2+yu**2))
- v = ZZ(gv*(xv**2+yv**2))
- mu = inverse_mod(u,4)
- suv = xu*xv+yu*yv
- inv_Nbk = inverse_mod(Nbk,4)
- inv_gugvNcksuv = inverse_mod(gu*gv*Nck*suv,4)
-
- Z4=Integers(4)
-
- M=matrix(Z4,[[0,0,u*Nbk,0],
- [0,inv_Nbk*inv_gugvNcksuv,gu*suv,0],
- [-inv_Nbk*mu,0,0,gu*Nbk*u],
- [0,0,0,gu*gv*Nbk*Nck*suv]])
-
- assert is_symplectic_matrix_dim2(M)
-
- return M
-
-def clapoti_cob_matrix_dim2_dim4(integers):
- gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers
-
- xu = ZZ(xu)
- yu = ZZ(yu)
- xv = ZZ(xv)
- yv = ZZ(yv)
- gu = ZZ(gu)
- gv = ZZ(gv)
- Nbk = ZZ(Nbk)
- Nck = ZZ(Nck)
- u = ZZ(gu*(xu**2+yu**2))
- v = ZZ(gv*(xv**2+yv**2))
- suv = xu*xv+yu*yv
- duv = xv*yu-xu*yv
- duv_2m = duv//2**m
- mu = inverse_mod(u,4)
- nu = inverse_mod(v,4)
- sigmauv = inverse_mod(suv,4)
- inv_guNbk = inverse_mod(gu*Nbk,4)
- lamb = nu*gu*gv*Nbk*suv
- mu1 = ZZ(mu*gu**2*gv*suv*Nbk*Nck*duv_2m)
- mu2 = ZZ(duv_2m*gu*sigmauv*(Nbk*u*yu+gv*xv*Nck*duv))
- mu3 = ZZ(duv_2m*gu*sigmauv*(Nbk*u*xu-gv*yv*Nck*duv))
-
- Z4=Integers(4)
-
- M=matrix(Z4,[[gu*xu,-gu*yu,0,0,0,0,mu2,mu3],
- [0,0,lamb*xv,-lamb*yv,mu1*yu,mu1*xu,0,0],
- [gu*yu,gu*xu,0,0,0,0,-mu3,mu2],
- [0,0,lamb*yv,lamb*xv,-mu1*xu,mu1*yu,0,0],
- [0,0,0,0,mu*xu,-mu*yu,0,0],
- [0,0,0,0,0,0,inv_guNbk*xv*sigmauv,-inv_guNbk*yv*sigmauv],
- [0,0,0,0,mu*yu,mu*xu,0,0],
- [0,0,0,0,0,0,inv_guNbk*yv*sigmauv,inv_guNbk*xv*sigmauv]])
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def clapoti_cob_splitting_matrix(integers):
- gu,xu,yu,gv,xv,yv,Nbk,Nck,e,m = integers
-
- v=ZZ(gv*(xv**2+yv**2))
- vNck=ZZ(v*Nck)
- inv_vNck=inverse_mod(vNck,4)
-
- Z4=Integers(4)
-
- M=matrix(Z4,[[0,0,0,0,-1,0,0,0],
- [0,0,0,0,0,-1,0,0],
- [0,0,vNck,0,0,0,0,0],
- [0,0,0,vNck,0,0,0,0],
- [1,0,-vNck,0,0,0,0,0],
- [0,1,0,-vNck,0,0,0,0],
- [0,0,0,0,1,0,inv_vNck,0],
- [0,0,0,0,0,1,0,inv_vNck]])
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-# =============================================== #
-# Functions for the class KaniFixedDegDim2 #
-# =============================================== #
-
-def fixed_deg_gluing_matrix_Phi1(u,a,b,c,d):
- u,a,b,c,d = ZZ(u),ZZ(a),ZZ(b),ZZ(c),ZZ(d)
-
- mu = inverse_mod(u,4)
- inv_cmd = inverse_mod(c-d,4)
-
- Z4 = Integers(4)
-
- M = matrix(Z4,[[0,0,u,0],
- [0,inv_cmd,c+d,0],
- [-mu,0,0,(d**2-c**2)*mu],
- [0,0,0,c-d]])
-
- assert is_symplectic_matrix_dim2(M)
-
- return M
-
-def fixed_deg_gluing_matrix_Phi2(u,a,b,c,d):
- u,a,b,c,d = ZZ(u),ZZ(a),ZZ(b),ZZ(c),ZZ(d)
-
- mu = inverse_mod(u,4)
- inv_cpd = inverse_mod(c+d,4)
-
- Z4 = Integers(4)
-
- M = matrix(Z4,[[0,0,u,0],
- [0,-inv_cpd,d-c,0],
- [-mu,0,0,(d**2-c**2)*mu],
- [0,0,0,-(c+d)]])
-
- assert is_symplectic_matrix_dim2(M)
-
- return M
-
-def fixed_deg_gluing_matrix_dim4(u,a,b,c,d,m):
- u,a,b,c,d = ZZ(u),ZZ(a),ZZ(b),ZZ(c),ZZ(d)
-
- mu = inverse_mod(u,4)
- nu = ZZ((-mu**2)%4)
- amb_2m = ZZ((a-b)//2**m)
- apb_2m = ZZ((a+b)//2**m)
- u2pc2md2_2m = ZZ((u**2+c**2-d**2)//2**m)
- inv_cmd = inverse_mod(c-d,4)
- inv_cpd = inverse_mod(c+d,4)
-
-
- Z4 = Integers(4)
-
- M = matrix(Z4,[[1,0,0,0,0,0,-u2pc2md2_2m,-apb_2m*(c+d)],
- [0,0,(c+d)*(c-d)*nu,(a-b)*(c-d)*nu,0,amb_2m*(c-d),0,0],
- [0,1,0,0,0,0,amb_2m*(c-d),-u2pc2md2_2m],
- [0,0,-(a+b)*(c+d)*nu,(c+d)*(c-d)*nu,-apb_2m*(c+d),0,0,0],
- [0,0,0,0,1,0,0,0],
- [0,0,0,0,0,0,1,(a+b)*inv_cmd],
- [0,0,0,0,0,1,0,0],
- [0,0,0,0,0,0,(b-a)*inv_cpd,1]])
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def fixed_deg_gluing_matrix(u,a,b,c,d):
- r"""
- Deprecated.
- """
-
- mu = inverse_mod(u,4)
- nu = (-mu**2)%4
-
- Z4 = Integers(4)
-
- M = matrix(Z4,[[0,0,0,0,ZZ(u),0,0,0],
- [0,0,0,0,0,ZZ(u),0,0],
- [0,0,ZZ(nu*(a+b)),ZZ(nu*(d-c)),ZZ(a+b),ZZ(d-c),0,0],
- [0,0,ZZ(nu*(c+d)),ZZ(nu*(a-b)),ZZ(c+d),ZZ(a-b),0,0],
- [ZZ(-mu),0,0,0,0,0,ZZ(u),0],
- [0,ZZ(-mu),0,0,0,0,0,ZZ(u)],
- [0,0,0,0,0,0,ZZ(a-b),ZZ(-c-d)],
- [0,0,0,0,0,0,ZZ(c-d),ZZ(a+b)]])
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def fixed_deg_splitting_matrix(u):
-
- mu = inverse_mod(u,4)
-
- Z4 = Integers(4)
-
- M = matrix(Z4,[[0,0,0,0,-1,0,0,0],
- [0,0,0,0,0,-1,0,0],
- [0,0,ZZ(-u),0,0,0,0,0],
- [0,0,0,ZZ(-u),0,0,0,0],
- [1,0,ZZ(-mu),0,0,0,0,0],
- [0,1,0,ZZ(-mu),0,0,0,0],
- [0,0,0,0,ZZ(mu),0,ZZ(mu),0],
- [0,0,0,0,0,ZZ(mu),0,ZZ(mu)]])
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-
-# ========================================================== #
-# Functions for the class KaniEndo (one isogeny chain) #
-# ========================================================== #
-
-def gluing_base_change_matrix_dim2_dim4(a1,a2,m,mua2):
- r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of Am*Am[4]
- given by the kernel of the dimension 4 gluing isogeny Am*Am-->B:
-
- B_K4=2**(e-m)[(Phi([a1]P1,sigma(P1)),Phi([a2]P1,0)),(Phi([a1]P2,sigma(P2)),Phi([a2]P2,0)),
- (Phi(-[a2]P1,0),Phi([a1]P1,sigma(P1))),(Phi(-[a2]P2,0),Phi([a2]P2,sigma(P2)))]
-
- in the basis associated to the product theta-structure of level 2 of Am*Am:
-
- B:=[(S1,0),(S2,0),(0,S1),(0,S2),(T1,0),(T2,0),(0,T1),(0,T2)]
-
- where:
- - (P1,P2) is the canonical basis of E1[2**f].
- - (R1,R2) is the image of (P1,P2) by sigma.
- - Phi is the 2**m-isogeny E1*E2-->Am (m first steps of the chain in dimension 2).
- - S1=[2**e]Phi([lamb]P2,[a]sigma(P1)+[b]sigma(P2)).
- - S2=[2**e]Phi([mu]P1,[c]sigma(P1)+[d]sigma(P2)).
- - T1=[2**(e-m)]Phi([a1]P1-[a2]P2,sigma(P1)).
- - T2=[2**(e-m)]Phi([a1]P2+[a2]P1,sigma(P2)).
- - (S1,S2,T1,T2) is induced by the image by Phi of a symplectic basis of E1*E2[2**(m+2)] lying
- above the symplectic basis of E1*E2[4] outputted by gluing_base_change_matrix_dim2.
-
- INPUT:
- - a1, a2: integers.
- - m: integer (number of steps in dimension 2).
- - mua2: product mu*a2.
-
- OUTPUT:
- - M: symplectic base change matrix of (*,B_K4) in B.
- """
- a1a2_2m=ZZ(a1*a2//2**m)
- a22_2m=ZZ(a2**2//2**m)
-
- Z4=Integers(4)
-
- C=matrix(Z4,[[-a1a2_2m,a22_2m,a22_2m,a1a2_2m],
- [-a22_2m,-a1a2_2m,-a1a2_2m,a22_2m],
- [-a22_2m,-a1a2_2m,-a1a2_2m,a22_2m],
- [a1a2_2m,-a22_2m,-a22_2m,-a1a2_2m]])
-
- D=matrix(Z4,[[1,0,0,0],
- [mua2,1,0,-mua2],
- [0,0,1,0],
- [0,mua2,mua2,1]])
-
- M=complete_symplectic_matrix_dim4(C,D,4)
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def splitting_base_change_matrix_dim4(a1,a2,q,m,M0,A_B,mu=None):
- r"""
- Let F be the endomorphism of E1^2*E2^2 given by Kani's lemma. Write:
- E1^2*E2^2 -- Phi x Phi --> Am^2 -- G --> E1^2*E2^2,
- where Phi: E1 x E1 --> Am is a 2**m-isogeny in dimension 2.
- Let (U_1,...,U_4,V_1,...,V_4) be a symplectic basis of Am^2[2**(e-m+2)]
- such that V_i=Phi x Phi(W_i), where W_1,...,W_4 have order 2**(e+2), lie over ker(F)
- and generate an isotropic subgroup:
- W_1=([a1]P1-[2^e/a1]P1,[a2]P1,R2,0)
- W_2=([a1]Q1,[a2]Q1,S2,0)
- W_3=(-[a2]P1,[a1]P1,0,R2)
- W_4=(-[a2]Q1,[a1]Q1,0,S2),
- with (P1,Q1), a basis of E1[2**(e+2)] and (R2,S2) its image via
- sigma: E1 --> E2. Then B:=([2^(e-m)]G(U_1),...,[2^(e-m)]G(U_4),G(V_1),...,G(V_4))
- is a symplectic basis of E1^2*E2^2[4].
-
- We assume that ([2^(e-m)]U_1,...,[2^(e-m)]U_4) is the symplectic complement of
- ([2^(e-m)]V_1,...,[2^(e-m)]V_4) that has been outputted by
- gluing_base_change_matrix_dim2_dim4 for the gluing isogeny on Am^2
- (first 2-isogeny of G). This function computes the base change matrix of B
- in the symplectic basis of E1^2*E2^2[4]:
- B0=[(T1,0,0,0),(0,T1,0,0),(0,0,T2,0),(0,0,0,T2),(U1,0,0,0),(0,U1,0,0),
- (0,0,U2,0),(0,0,0,U2)]
- associated to the product Theta structure on E1^2*E2^2.
-
- INPUT:
- - a1,a2,q: integers defining F (q=deg(sigma)).
- - m: 2-adic valuation of a2.
- - M0: base change matrix of the symplectic basis 2**e*B1 of E1*E2[4]
- given by:
- B1:=[[(P1,0),(0,R2)],[(Q1,0),(0,lamb*S2)]]
- in the canonical symplectic basis:
- B0:=[[(T1,0),(0,T2)],[(U1,0),(0,U2)]],
- where lamb is the modular inverse of q mod 2**(e+2), so that:
- e_{2**(e+2)}(P1,P2)=e_{2**(e+2)}(R1,lamb*R2).
- - A_B: 4 first columns (left part) of the symplectic matrix outputted by
- gluing_base_change_matrix_dim2_dim4.
- - mu, a, b, c, d: integers defining the product Theta structure of Am^2
- given by the four torsion basis [2**(e-m)]*B1 of Am, where:
- B1=[[2**m]Phi([2**(m+1)]P2,[a]sigma(P1)+[b]sigma(P2)),
- [2**m]Phi([mu]P1,[2**(m+1)]sigma(P1)+[d]sigma(P2)),
- Phi([a1]P1-[a2]P2,sigma(P1)),
- Phi([a1]P2+[a2]P1,sigma(P2))].
- Only mu is given.
-
- OUTPUT: The desired base change matrix.
- """
- Z4=Integers(4)
-
- a2_2m=ZZ(a2//2**m)
- a12_q_2m=ZZ((a1**2+q)//2**m)
-
- inv_q=inverse_mod(q,4)
- inv_a1=inverse_mod(a1,4)
-
- lamb=ZZ(2**(m+1))
- if mu==None:
- mu=ZZ((1-2**(m+1)*q)*inv_a1)
- a=ZZ(2**(m+1)*a2*inv_q)
- b=ZZ(-(1+2**(m+1)*a1)*inv_q)
- c=ZZ(2**(m+1))
- d=ZZ(-mu*a2*inv_q)
-
- # Matrix of the four torsion basis of E1^2*E2^2[4] given by
- # ([2^(e-m)]G(B1[0],0),[2^(e-m)]G(B1[1],0),[2^(e-m)]G(0,B1[0]),[2^(e-m)]G(0,B1[1]),
- # G(B1[2],0),G(B1[3],0),G(0,B1[2]),G(0,B1[3])) in the basis induced by
- # [2**e](P1,Q1,R2,[1/q]S2)
- M1=matrix(Z4,[[a*q,mu*a1+c*q,0,mu*a2,a12_q_2m,a1*a2_2m,a1*a2_2m,a2*a2_2m],
- [0,-mu*a2,a*q,mu*a1+c*q,-a1*a2_2m,-a2*a2_2m,a12_q_2m,a1*a2_2m],
- [a1*a,a1*c-mu,-a*a2,-c*a2,0,-a2_2m,-a2_2m,0],
- [a2*a,a2*c,a*a1,c*a1-mu,a2_2m,0,0,-a2_2m],
- [lamb*a1+b*q,d*q,lamb*a2,0,-a1*a2_2m,a12_q_2m,-a2*a2_2m,a1*a2_2m],
- [-lamb*a2,0,lamb*a1+b*q,d*q,a2*a2_2m,-a1*a2_2m,-a1*a2_2m,a12_q_2m],
- [(a1*b-lamb)*q,a1*d*q,-b*a2*q,-a2*d*q,a2_2m*q,0,0,-a2_2m*q],
- [a2*b*q,a2*d*q,(b*a1-lamb)*q,a1*d*q,0,a2_2m*q,a2_2m*q,0]])
- #A,B,C,D=bloc_decomposition(M1)
- #if B.transpose()*A!=A.transpose()*B:
- #print("B^T*A!=A^T*B")
- #if C.transpose()*D!=D.transpose()*C:
- #print("C^T*D!=D^T*C")
- #if A.transpose()*D-B.transpose()*C!=identity_matrix(4):
- #print(A.transpose()*D-B.transpose()*C)
- #print("A^T*D-B^T*C!=I")
- #print(M1)
- #print(M1.det())
-
- # Matrix of ([2^e]G(U_1),...,[2^e]G(U_4)) in the basis induced by
- # [2**e](P1,Q1,R2,[1/q]S2)
- M_left=M1*A_B
- #print(A_B)
- #print(M_left)
-
- # Matrix of (G(V_1),...,G(V_4)) in the basis induced by [2**e](P1,Q1,R2,[1/q]S2)
- M_right=matrix(Z4,[[0,0,0,0],
- [a2*inv_a1,0,1,0],
- [inv_a1,0,0,0],
- [0,0,0,0],
- [0,1,0,-a2*inv_a1],
- [0,0,0,0],
- [0,0,0,0],
- [0,0,0,q*inv_a1]])
-
- # Matrix of the basis induced by [2**e](P1,Q1,R2,[1/q]S2) in the basis
- # B0 (induced by T1, U1, T2, U2)
- MM0=matrix(Z4,[[M0[0,0],0,M0[0,1],0,M0[0,2],0,M0[0,3],0],
- [0,M0[0,0],0,M0[0,1],0,M0[0,2],0,M0[0,3]],
- [M0[1,0],0,M0[1,1],0,M0[1,2],0,M0[1,3],0],
- [0,M0[1,0],0,M0[1,1],0,M0[1,2],0,M0[1,3]],
- [M0[2,0],0,M0[2,1],0,M0[2,2],0,M0[2,3],0],
- [0,M0[2,0],0,M0[2,1],0,M0[2,2],0,M0[2,3]],
- [M0[3,0],0,M0[3,1],0,M0[3,2],0,M0[3,3],0],
- [0,M0[3,0],0,M0[3,1],0,M0[3,2],0,M0[3,3]]])
-
- M=MM0*block_matrix(1,2,[M_left,M_right])
-
- #A,B,C,D=bloc_decomposition(M)
-
- #M=complete_symplectic_matrix_dim4(C,D)
-
- #print(M.det())
- #print(M)
-
- A,B,C,D=bloc_decomposition(M)
- if B.transpose()*A!=A.transpose()*B:
- print("B^T*A!=A^T*B")
- if C.transpose()*D!=D.transpose()*C:
- print("C^T*D!=D^T*C")
- if A.transpose()*D-B.transpose()*C!=identity_matrix(4):
- print("A^T*D-B^T*C!=I")
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-# ============================================================================ #
-# Functions for the class KaniEndoHalf (isogeny chain decomposed in two) #
-# ============================================================================ #
-
-def complete_kernel_matrix_F1(a1,a2,q,f):
- r"""Computes the symplectic base change matrix of a symplectic basis of the form (*,B_Kp1)
- in the symplectic basis of E1^2*E2^2[2**f] given by:
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)],
- [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]]
- where:
- - B_Kp1 is a basis of an isotropic subgroup of E1^2*E2^2[2**f] lying above ker(F1).
- By convention B_Kp1=[(\tilde{\alpha}_1(P1,0),\Sigma(P1,0)),
- (\tilde{\alpha}_1(P2,0),\Sigma(P2,0)),
- (\tilde{\alpha}_1(0,P1),\Sigma(0,P1)),
- (\tilde{\alpha}_1(0,P2),\Sigma(0,P2))]
- - lamb is the inverse of q modulo 2**f.
- - (P1,P2) is the canonical basis of E1[2**f].
- - (R1,R2) is the image of (P1,P2) by sigma.
-
- Input:
- - a1, a2, q: Integers such that q+a1**2+a2**2=2**e.
- - f: integer determining the accessible 2-torsion in E1 (E1[2**f]).
-
- Output:
- - M: symplectic base change matrix of (*,B_Kp1) in B1.
- """
- N=2**f
- ZN=Integers(N)
-
- C=matrix(ZN,[[a1,0,-a2,0],
- [a2,0,a1,0],
- [1,0,0,0],
- [0,0,1,0]])
-
- D=matrix(ZN,[[0,a1,0,-a2],
- [0,a2,0,a1],
- [0,q,0,0],
- [0,0,0,q]])
-
- assert C.transpose()*D==D.transpose()*C
-
- M=complete_symplectic_matrix_dim4(C,D,N)
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def complete_kernel_matrix_F2_dual(a1,a2,q,f):
- r"""Computes the symplectic base change matrix of a symplectic basis of the form (*,B_Kp2)
- in the symplectic basis of E1^2*E2^2[2**f] given by:
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)],
- [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]]
- where:
- - B_Kp2 is a basis of an isotropic subgroup of E1^2*E2^2[2**f] lying above ker(\tilde{F2}).
- By convention B_Kp2=[(\alpha_1(P1,0),-\Sigma(P1,0)),
- (\alpha_1(P2,0),-\Sigma(P2,0)),
- (\alpha_1(0,P1),-\Sigma(0,P1)),
- (\alpha_1(0,P2),-\Sigma(0,P2))].
- - lamb is the inverse of q modulo 2**f.
- - (P1,P2) is the canonical basis of E1[2**f].
- - (R1,R2) is the image of (P1,P2) by sigma.
-
- Input:
- - a1, a2, q: Integers such that q+a1**2+a2**2=2**e.
- - f: integer determining the accessible 2-torsion in E1 (E1[2**f]).
-
- Output:
- - M: symplectic base change matrix of (*,B_Kp2) in B1.
- """
- N=2**f
- ZN=Integers(N)
-
- C=matrix(ZN,[[a1,0,a2,0],
- [-a2,0,a1,0],
- [-1,0,0,0],
- [0,0,-1,0]])
-
- D=matrix(ZN,[[0,a1,0,a2],
- [0,-a2,0,a1],
- [0,-q,0,0],
- [0,0,0,-q]])
-
-
-
- M=complete_symplectic_matrix_dim4(C,D,N)
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def matrix_F_dual(a1,a2,q,f):
- r""" Computes the matrix of \tilde{F}(B1) in B1, where:
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)],
- [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]]
- as defined in complete_kernel_matrix_F2_dual.
-
- Input:
- - a1, a2, q: Integers such that q+a1**2+a2**2=2**e.
- - f: integer determining the accessible 2-torsion in E1 (E1[2**f]).
-
- Output:
- - M: symplectic base change matrix of \tilde{F}(B1) in B1.
- """
- N=2**f
- ZN=Integers(N)
-
- M=matrix(ZN,[[a1,-a2,-q,0,0,0,0,0],
- [a2,a1,0,-q,0,0,0,0],
- [1,0,a1,a2,0,0,0,0],
- [0,1,-a2,a1,0,0,0,0],
- [0,0,0,0,a1,-a2,-1,0],
- [0,0,0,0,a2,a1,0,-1],
- [0,0,0,0,q,0,a1,a2],
- [0,0,0,0,0,q,-a2,a1]])
-
- return M
-
-def matrix_F(a1,a2,q,f):
- r""" Computes the matrix of F(B1) in B1, where:
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)],
- [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]]
- as defined in complete_kernel_matrix_F1.
-
- Input:
- - a1, a2, q: Integers such that q+a1**2+a2**2=2**e.
- - f: integer determining the accessible 2-torsion in E1 (E1[2**f]).
-
- Output:
- - M: symplectic base change matrix of \tilde{F}(B1) in B1.
- """
- N=2**f
- ZN=Integers(N)
-
- M=matrix(ZN,[[a1,a2,q,0,0,0,0,0],
- [-a2,a1,0,q,0,0,0,0],
- [-1,0,a1,-a2,0,0,0,0],
- [0,-1,a2,a1,0,0,0,0],
- [0,0,0,0,a1,a2,1,0],
- [0,0,0,0,-a2,a1,0,1],
- [0,0,0,0,-q,0,a1,-a2],
- [0,0,0,0,0,-q,a2,a1]])
-
- return M
-
-def starting_two_symplectic_matrices(a1,a2,q,f):
- r"""
- Computes the matrices of two symplectic basis of E1^2*E2^2[2**f] given
- by (*,B_Kp1) and (*,B_Kp2) in the basis
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)],
- [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]]
- as defined in complete_kernel_matrix_F1.
-
- Input:
- - a1, a2, q: Integers such that q+a1**2+a2**2=2**e.
- - f: integer determining the accessible 2-torsion in E1 (E1[2**f]).
-
- Output:
- - M1, M2: the symplectic base change matrices of (*,B_Kp1) and (*,B_Kp2) in B1.
- """
- M1_0=complete_kernel_matrix_F1(a1,a2,q,f)
- MatF=matrix_F(a1,a2,q,f)
-
- # Matrix of an isotropic subgroup of E1^2*E2^2[2**f] lying above ker(\tilde{F2}).
- Block_right2=MatF*M1_0[:,[0,1,2,3]]
-
- N=ZZ(2**f)
-
- C=Block_right2[[0,1,2,3],:]
- D=Block_right2[[4,5,6,7],:]
-
- assert C.transpose()*D==D.transpose()*C
-
- # Matrix of the resulting symplectic basis (*,B_Kp2)
- M2=complete_symplectic_matrix_dim4(C,D,N)
-
- MatF_dual=matrix_F_dual(a1,a2,q,f)
-
- Block_right1=MatF_dual*M2[:,[0,1,2,3]]
-
- C=Block_right1[[0,1,2,3],:]
- D=Block_right1[[4,5,6,7],:]
-
- A=M1_0[[0,1,2,3],[0,1,2,3]]
- B=M1_0[[4,5,6,7],[0,1,2,3]]
-
- assert C.transpose()*D==D.transpose()*C
- assert B.transpose()*A==A.transpose()*B
-
- # Matrix of the resulting symplectic basis (*,B_Kp1)
- M1=block_matrix(1,2,[M1_0[:,[0,1,2,3]],-Block_right1])
-
- assert is_symplectic_matrix_dim4(M1)
-
- A,B,C,D=bloc_decomposition(M1)
- a2_div=a2
- m=0
- while a2_div%2==0:
- m+=1
- a2_div=a2_div//2
- for j in range(4):
- assert (-D[0,j]*a1-C[0,j]*a2-D[2,j])%2**m==0
- assert (C[0,j]*a1-D[0,j]*a2+C[2,j]*q)%2**m==0
- assert (-D[1,j]*a1-C[1,j]*a2-D[3,j])%2**m==0
- assert (C[1,j]*a1-D[1,j]*a2+C[3,j]*q)%2**m==0
-
- return M1, M2
-
-def gluing_base_change_matrix_dim2_F1(a1,a2,q):
- r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of E1*E2[4]
- given by the kernel of the dimension 2 gluing isogeny:
- B_K4=2**(f-2)[([a1]P1-[a2]P2,R1),([a1]P2+[a2]P1,R2)]
- in the basis $2**(f-2)*B1$ given by:
- B1:=[[(P1,0),(0,R1)],[(P2,0),(0,[1/q]*R2)]]
- where:
- - lamb is the inverse of q modulo 2**f.
- - (P1,P2) is the canonical basis of E1[2**f].
- - (R1,R2) is the image of (P1,P2) by sigma.
-
- Input:
- - a1, q: integers.
-
- Output:
- - M: symplectic base change matrix of (*,B_K4) in 2**(f-2)*B1.
- """
- return gluing_base_change_matrix_dim2(a1,a2,q)
-
-def gluing_base_change_matrix_dim2_dim4_F1(a1,a2,q,m,M1):
- r"""Computes the symplectic base change matrix of the symplectic basis Bp of Am*Am[4] induced
- by the image of the symplectic basis (x_1, ..., x_4, y_1, ..., y_4) of E1^2*E2^2[2**(e1+2)]
- adapted to ker(F1)=[4]<y_1, ..., y_4> in the basis associated to the product theta-structure
- of level 2 of Am*Am:
-
- B:=[(S1,0),(S2,0),(0,S1),(0,S2),(T1,0),(T2,0),(0,T1),(0,T2)]
-
- where:
- - (P1,Q1) is the canonical basis of E1[2**f].
- - (R2,S2) is the image of (P1,P2) by sigma.
- - Phi is the 2**m-isogeny E1*E2-->Am (m first steps of the chain in dimension 2).
- - S1=[2**e]Phi([lamb]Q1,[a]sigma(P1)+[b]sigma(Q1)).
- - S2=[2**e]Phi([mu]P1,[c]sigma(P1)+[d]sigma(Q1)).
- - T1=[2**(e-m)]Phi([a1]P1-[a2]Q1,sigma(P1)).
- - T2=[2**(e-m)]Phi([a1]Q1+[a2]P1,sigma(Q1)).
- - (S1,S2,T1,T2) is induced by the image by Phi of a symplectic basis of E1*E2[2**(m+2)] lying
- above the symplectic basis of E1*E2[4] outputted by gluing_base_change_matrix_dim2.
-
- INPUT:
- - a1, a2, q: integers.
- - m: integer (number of steps in dimension 2 and 2-adic valuation of a2).
- - M1: matrix of (x_1, ..., x_4, y_1, ..., y_4) in the symplectic basis of E1^2*E2^2[2**(e1+2)]
- given by:
-
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R2,0),(0,0,0,R2)],
- [(Q1,0,0,0),(0,Q1,0,0),(0,0,[1/q]*S2,0),(0,0,0,[1/q]*S2)]]
-
- OUTPUT:
- - M: symplectic base change matrix of Bp in B.
- """
-
- inv_a1=inverse_mod(a1,2**(m+2))
- inv_q=inverse_mod(q,2**(m+2))
- lamb=ZZ(2**(m+1))
- mu=ZZ((1-2**(m+1)*q)*inv_a1)
- a=ZZ(2**(m+1)*a2*inv_q)
- bq=ZZ((-1-2**(m+1)*a1))
- c=ZZ(2**(m+1))
- dq=-ZZ(mu*a2)
-
- Z4=Integers(4)
-
- A,B,C,D=bloc_decomposition(M1)
-
- Ap=matrix(Z4,[[ZZ(-B[0,j]*a1-A[0,j]*a2-B[2,j]) for j in range(4)],
- [ZZ(A[0,j]*a1-B[0,j]*a2+A[2,j]*q) for j in range(4)],
- [ZZ(-B[1,j]*a1-A[1,j]*a2-B[3,j]) for j in range(4)],
- [ZZ(A[1,j]*a1-B[1,j]*a2+A[3,j]*q) for j in range(4)]])
-
- Bp=matrix(Z4,[[ZZ(2**m*(B[2,j]*a-A[0,j]*lamb-A[2,j]*bq)) for j in range(4)],
- [ZZ(2**m*(B[2,j]*c+B[0,j]*mu-A[2,j]*dq)) for j in range(4)],
- [ZZ(2**m*(B[3,j]*a-A[1,j]*lamb-A[3,j]*bq)) for j in range(4)],
- [ZZ(2**m*(B[3,j]*c+B[1,j]*mu-A[3,j]*dq)) for j in range(4)]])
-
- Cp=matrix(Z4,[[ZZ(ZZ(-D[0,j]*a1-C[0,j]*a2-D[2,j])//(2**m)) for j in range(4)],
- [ZZ(ZZ(C[0,j]*a1-D[0,j]*a2+C[2,j]*q)//2**m) for j in range(4)],
- [ZZ(ZZ(-D[1,j]*a1-C[1,j]*a2-D[3,j])//2**m) for j in range(4)],
- [ZZ(ZZ(C[1,j]*a1-D[1,j]*a2+C[3,j]*q)//2**m) for j in range(4)]])
-
- Dp=matrix(Z4,[[ZZ(D[2,j]*a-C[0,j]*lamb-C[2,j]*bq) for j in range(4)],
- [ZZ(D[0,j]*mu+D[2,j]*c-C[2,j]*dq) for j in range(4)],
- [ZZ(D[3,j]*a-C[1,j]*lamb-C[3,j]*bq) for j in range(4)],
- [ZZ(D[1,j]*mu+D[3,j]*c-C[3,j]*dq) for j in range(4)]])
-
- M=block_matrix(2,2,[[Ap,Cp],[Bp,Dp]])
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def gluing_base_change_matrix_dim2_F2(a1,a2,q):
- r"""Computes the symplectic base change matrix of a symplectic basis (*,B_K4) of E1*E2[4]
- given by the kernel of the dimension 2 gluing isogeny:
- B_K4=2**(f-2)[([a1]P1-[a2]P2,R1),([a1]P2+[a2]P1,R2)]
- in the basis $2**(f-2)*B1$ given by:
- B1:=[[(P1,0),(0,R1)],[(P2,0),(0,[1/q]*R2)]]
- where:
- - lamb is the inverse of q modulo 2**f.
- - (P1,P2) is the canonical basis of E1[2**f].
- - (R1,R2) is the image of (P1,P2) by sigma.
-
- Input:
- - a1, q: integers.
-
- Output:
- - M: symplectic base change matrix of (*,B_K4) in 2**(f-2)*B1.
- """
-
- Z4=Integers(4)
-
- mu=inverse_mod(a1,4)
-
- A=matrix(Z4,[[0,mu],
- [0,0]])
- B=matrix(Z4,[[0,0],
- [1,-ZZ(mu*a2)]])
-
- C=matrix(Z4,[[ZZ(a1),-ZZ(a2)],
- [-1,0]])
- D=matrix(Z4,[[ZZ(a2),ZZ(a1)],
- [0,-ZZ(q)]])
-
- M=block_matrix([[A,C],[B,D]])
-
- assert is_symplectic_matrix_dim2(M)
-
- return M
-
-def gluing_base_change_matrix_dim2_dim4_F2(a1,a2,q,m,M2):
- r"""Computes the symplectic base change matrix of the symplectic basis Bp of Am*Am[4] induced
- by the image of the symplectic basis (x_1, ..., x_4, y_1, ..., y_4) of E1^2*E2^2[2**(e1+2)]
- adapted to ker(F1)=[4]<y_1, ..., y_4> in the basis associated to the product theta-structure
- of level 2 of Am*Am:
-
- B:=[(S1,0),(S2,0),(0,S1),(0,S2),(T1,0),(T2,0),(0,T1),(0,T2)]
-
- where:
- - (P1,Q1) is the canonical basis of E1[2**f].
- - (R2,S2) is the image of (P1,P2) by sigma.
- - Phi is the 2**m-isogeny E1*E2-->Am (m first steps of the chain in dimension 2).
- - S1=[2**e]Phi([lamb]Q1,[a]sigma(P1)+[b]sigma(Q1)).
- - S2=[2**e]Phi([mu]P1,[c]sigma(P1)+[d]sigma(Q1)).
- - T1=[2**(e-m)]Phi([a1]P1-[a2]Q1,sigma(P1)).
- - T2=[2**(e-m)]Phi([a1]Q1+[a2]P1,sigma(Q1)).
- - (S1,S2,T1,T2) is induced by the image by Phi of a symplectic basis of E1*E2[2**(m+2)] lying
- above the symplectic basis of E1*E2[4] outputted by gluing_base_change_matrix_dim2.
-
- INPUT:
- - a1, a2, q: integers.
- - m: integer (number of steps in dimension 2 and 2-adic valuation of a2).
- - M2: matrix of (x_1, ..., x_4, y_1, ..., y_4) in the symplectic basis of E1^2*E2^2[2**(e1+2)]
- given by:
-
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R2,0),(0,0,0,R2)],
- [(Q1,0,0,0),(0,Q1,0,0),(0,0,[1/q]*S2,0),(0,0,0,[1/q]*S2)]]
-
- OUTPUT:
- - M: symplectic base change matrix of Bp in B.
- """
-
- inv_a1=inverse_mod(a1,2**(m+2))
- inv_q=inverse_mod(q,2**(m+2))
- lamb=ZZ(2**(m+1))
- mu=ZZ((1+2**(m+1)*q)*inv_a1)
- a=ZZ(2**(m+1)*a2*inv_q)
- bq=ZZ((1+2**(m+1)*a1))
- c=ZZ(2**(m+1))
- dq=-ZZ(mu*a2)
-
- Z4=Integers(4)
-
- A,B,C,D=bloc_decomposition(M2)
-
- Ap=matrix(Z4,[[ZZ(-B[0,j]*a1+A[0,j]*a2+B[2,j]) for j in range(4)],
- [ZZ(A[0,j]*a1+B[0,j]*a2-A[2,j]*q) for j in range(4)],
- [ZZ(-B[1,j]*a1+A[1,j]*a2+B[3,j]) for j in range(4)],
- [ZZ(A[1,j]*a1+B[1,j]*a2-A[3,j]*q) for j in range(4)]])
-
- Bp=matrix(Z4,[[ZZ(2**m*(B[2,j]*a-A[0,j]*lamb-A[2,j]*bq)) for j in range(4)],
- [ZZ(2**m*(B[2,j]*c+B[0,j]*mu-A[2,j]*dq)) for j in range(4)],
- [ZZ(2**m*(B[3,j]*a-A[1,j]*lamb-A[3,j]*bq)) for j in range(4)],
- [ZZ(2**m*(B[3,j]*c+B[1,j]*mu-A[3,j]*dq)) for j in range(4)]])
-
- Cp=matrix(Z4,[[ZZ(ZZ(-D[0,j]*a1+C[0,j]*a2+D[2,j])//(2**m)) for j in range(4)],
- [ZZ(ZZ(C[0,j]*a1+D[0,j]*a2-C[2,j]*q)//2**m) for j in range(4)],
- [ZZ(ZZ(-D[1,j]*a1+C[1,j]*a2+D[3,j])//2**m) for j in range(4)],
- [ZZ(ZZ(C[1,j]*a1+D[1,j]*a2-C[3,j]*q)//2**m) for j in range(4)]])
-
- Dp=matrix(Z4,[[ZZ(D[2,j]*a-C[0,j]*lamb-C[2,j]*bq) for j in range(4)],
- [ZZ(D[0,j]*mu+D[2,j]*c-C[2,j]*dq) for j in range(4)],
- [ZZ(D[3,j]*a-C[1,j]*lamb-C[3,j]*bq) for j in range(4)],
- [ZZ(D[1,j]*mu+D[3,j]*c-C[3,j]*dq) for j in range(4)]])
-
- M=block_matrix(2,2,[[Ap,Cp],[Bp,Dp]])
-
- assert is_symplectic_matrix_dim4(M)
-
- return M
-
-def point_matrix_product(M,L_P,J=None,modulus=None):
- r"""
- Input:
- - M: matrix with (modular) integer values.
- - L_P: list of elliptic curve points [P1,P2,R1,R2] such that the rows of M correspond to the vectors
- (P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1),(P2,0,0,0),(0,P2,0,0),(0,0,R2,0),(0,0,0,R2).
- - J: list of column indices (default, all the columns).
- - modulus: order of points in L_P (default, None).
-
- Output:
- - L_ret: list of points corresponding to the columns of M with indices in J.
- """
- if modulus==None:
- M1=M
- else:
- Zmod=Integers(modulus)
- M1=matrix(Zmod,M)
-
- if J==None:
- J=range(M1.ncols())
-
- L_ret=[]
- for j in J:
- L_ret.append(TuplePoint(M1[0,j]*L_P[0]+M1[4,j]*L_P[1],M1[1,j]*L_P[0]+M1[5,j]*L_P[1],
- M1[2,j]*L_P[2]+M1[6,j]*L_P[3],M1[3,j]*L_P[2]+M1[7,j]*L_P[3]))
-
- return L_ret
-
-
-def kernel_basis(M,ei,mP1,mP2,mR1,mlambR2):
- r"""
- Input:
- - M: matrix of a symplectic basis in the basis
- B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)],
- [(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]]
- as defined in complete_kernel_matrix_F1.
- - ei: length of F1 or F2.
- - mP1,mP2: canonical basis (P1,P2) of E1[2**f] multiplied by m:=2**(f-ei-2).
- - mR1,mlambR2: (mR1,mlambR2)=(m*sigma(P1),m*sigma(P2)), where lamb is the
- inverse of q=deg(sigma) modulo 2**f.
-
- Output:
- - Basis of the second symplectic subgroup basis of E1^2*E2^2[2**(ei+2)] induced by M.
- """
- modulus=2**(ei+2)
-
- return point_matrix_product(M,[mP1,mP2,mR1,mlambR2],[4,5,6,7],modulus)
-
-def base_change_canonical_dim4(P1,P2,R1,R2,q,f,e1,e2):
- lamb=inverse_mod(q,2**f)
-
- lambR2=lamb*R2
-
- P1_doubles=[P1]
- P2_doubles=[P2]
- R1_doubles=[R1]
- lambR2_doubles=[lambR2]
-
- for i in range(f-2):
- P1_doubles.append(2*P1_doubles[-1])
- P2_doubles.append(2*P2_doubles[-1])
- R1_doubles.append(2*R1_doubles[-1])
- lambR2_doubles.append(2*lambR2_doubles[-1])
-
- # Constructing canonical basis of E1[4] and E2[4].
- _,_,T1,T2,MT=make_canonical(P1_doubles[-1],P2_doubles[-1],4,preserve_pairing=True)
- _,_,U1,U2,MU=make_canonical(R1_doubles[-1],lambR2_doubles[-1],4,preserve_pairing=True)
-
- # Base change matrix of the symplectic basis 2**(f-2)*B1 of E1^2*E2^2[4] in the basis:
- # B0:=[[(T1,0,0,0),(0,T1,0,0),(0,0,U1,0),(0,0,0,U1)],
- #[(T2,0,0,0),(0,T2,0,0),(0,0,U2,0),(0,0,0,U2)]]
- # where B1:=[[(P1,0,0,0),(0,P1,0,0),(0,0,R1,0),(0,0,0,R1)],
- #[(P2,0,0,0),(0,P2,0,0),(0,0,lamb*R2,0),(0,0,0,lamb*R2)]]
- Z4=Integers(4)
- M0=matrix(Z4,[[MT[0,0],0,0,0,MT[1,0],0,0,0],
- [0,MT[0,0],0,0,0,MT[1,0],0,0],
- [0,0,MU[0,0],0,0,0,MU[1,0],0],
- [0,0,0,MU[0,0],0,0,0,MU[1,0]],
- [MT[0,1],0,0,0,MT[1,1],0,0,0],
- [0,MT[0,1],0,0,0,MT[1,1],0,0],
- [0,0,MU[0,1],0,0,0,MU[1,1],0],
- [0,0,0,MU[0,1],0,0,0,MU[1,1]]])
-
- return P1_doubles,P2_doubles,R1_doubles,lambR2_doubles,T1,T2,U1,U2,MT,MU,M0