1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
from sage.all import *
import itertools
from ..theta_structures.theta_helpers_dim4 import multindex_to_index
def bloc_decomposition(M):
I1=[0,1,2,3]
I2=[4,5,6,7]
A=M[I1,I1]
B=M[I2,I1]
C=M[I1,I2]
D=M[I2,I2]
return A,B,C,D
def mat_prod_vect(A,I):
J=[]
for i in range(4):
J.append(0)
for k in range(4):
J[i]+=A[i,k]*I[k]
return tuple(J)
def add_tuple(I,J):
K=[]
for k in range(4):
K.append(I[k]+J[k])
return tuple(K)
def scal_prod_tuple(I,J):
s=0
for k in range(4):
s+=I[k]*J[k]
return s
def red_mod_2(I):
J=[]
for x in I:
J.append(ZZ(x)%2)
return tuple(J)
def choose_non_vanishing_index(C,D,zeta):
for I0 in itertools.product([0,1],repeat=4):
L=[0 for k in range(16)]
for J in itertools.product([0,1],repeat=4):
CJ=mat_prod_vect(C,J)
DJ=mat_prod_vect(D,J)
e=-scal_prod_tuple(CJ,DJ)-2*scal_prod_tuple(I0,DJ)
I0pDJ=add_tuple(I0,CJ)
L[multindex_to_index(red_mod_2(I0pDJ))]+=zeta**(ZZ(e))
for k in range(16):
if L[k]!=0:
return I0,L
def base_change_theta_dim4(M,zeta):
Z4=Integers(4)
A,B,C,D=bloc_decomposition(M.change_ring(Z4))
I0,L0=choose_non_vanishing_index(C,D,zeta)
N=[L0]+[[0 for j in range(16)] for i in range(15)]
for I in itertools.product([0,1],repeat=4):
if I!=(0,0,0,0):
AI=mat_prod_vect(A,I)
BI=mat_prod_vect(B,I)
for J in itertools.product([0,1],repeat=4):
CJ=mat_prod_vect(C,J)
DJ=mat_prod_vect(D,J)
AIpCJ=add_tuple(AI,CJ)
BIpDJ=add_tuple(BI,DJ)
e=scal_prod_tuple(I,J)-scal_prod_tuple(AIpCJ,BIpDJ)-2*scal_prod_tuple(I0,BIpDJ)
N[multindex_to_index(I)][multindex_to_index(red_mod_2(add_tuple(AIpCJ,I0)))]+=zeta**(ZZ(e))
Fp2=zeta.parent()
return matrix(Fp2,N)
def apply_base_change_theta_dim4(N,P):
Q=[]
for i in range(16):
Q.append(0)
for j in range(16):
Q[i]+=N[i,j]*P[j]
return Q
def complete_symplectic_matrix_dim4(C,D,n=4):
Zn=Integers(n)
Col_I4=[matrix(Zn,[[1],[0],[0],[0]]),matrix(Zn,[[0],[1],[0],[0],[0]]),
matrix(Zn,[[0],[0],[1],[0],[0],[0]]),matrix(Zn,[[0],[0],[0],[1],[0],[0],[0]])]
L_DC=block_matrix([[D.transpose(),-C.transpose()]])
Col_AB_i=L_DC.solve_right(Col_I4[0])
A_t=Col_AB_i[[0,1,2,3],0].transpose()
B_t=Col_AB_i[[4,5,6,7],0].transpose()
for i in range(1,4):
F=block_matrix(2,1,[L_DC,block_matrix(1,2,[B_t,-A_t])])
Col_AB_i=F.solve_right(Col_I4[i])
A_t=block_matrix(2,1,[A_t,Col_AB_i[[0,1,2,3],0].transpose()])
B_t=block_matrix(2,1,[B_t,Col_AB_i[[4,5,6,7],0].transpose()])
A=A_t.transpose()
B=B_t.transpose()
M=block_matrix([[A,C],[B,D]])
return M
def random_symmetric_matrix(n,r):
Zn=Integers(n)
M=zero_matrix(Zn,r,r)
for i in range(r):
M[i,i]=randint(0,n-1)
for i in range(r):
for j in range(i+1,r):
M[i,j]=randint(0,n-1)
M[j,i]=M[i,j]
return M
def random_symplectic_matrix(n):
Zn=Integers(n)
C=random_symmetric_matrix(n,4)
Cp=random_symmetric_matrix(n,4)
A=random_matrix(Zn,4,4)
while not A.is_invertible():
A=random_matrix(Zn,4,4)
tA_inv=A.inverse().transpose()
ACp=A*Cp
return block_matrix([[ACp,A],[C*ACp-tA_inv,C*A]])
def is_symplectic_matrix_dim4(M):
A,B,C,D=bloc_decomposition(M)
if B.transpose()*A!=A.transpose()*B:
return False
if C.transpose()*D!=D.transpose()*C:
return False
if A.transpose()*D-B.transpose()*C!=identity_matrix(4):
return False
return True
|