Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/theta_structures/theta_helpers_dim2.py
diff options
context:
space:
mode:
authorRyan Rueger <git@rueg.re>2025-03-01 20:25:41 +0100
committerRyan Rueger <git@rueg.re>2025-03-01 22:11:11 +0100
commitd40de259097c5e8d8fd35539560ca7c3d47523e7 (patch)
tree18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/theta_structures/theta_helpers_dim2.py
downloadpegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com> Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com> Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com> Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com> Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com> Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s] Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr> Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net> Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/theta_structures/theta_helpers_dim2.py')
-rw-r--r--theta_lib/theta_structures/theta_helpers_dim2.py32
1 files changed, 32 insertions, 0 deletions
diff --git a/theta_lib/theta_structures/theta_helpers_dim2.py b/theta_lib/theta_structures/theta_helpers_dim2.py
new file mode 100644
index 0000000..a57789d
--- /dev/null
+++ b/theta_lib/theta_structures/theta_helpers_dim2.py
@@ -0,0 +1,32 @@
+from sage.all import *
+
+def batch_inversion(L):
+ r"""Does n inversions in 3(n-1)M+1I.
+
+ Input:
+ - L: list of elements to invert.
+
+ Output:
+ - [1/x for x in L]
+ """
+ # Given L=[a0,...,an]
+ # Computes multiples=[a0, a0.a1, ..., a0...an]
+ multiples=[L[0]]
+ for ai in L[1:]:
+ multiples.append(multiples[-1]*ai)
+
+ # Computes inverses=[1/(a0...an),...,1/a0]
+ inverses=[1/multiples[-1]]
+ for i in range(1,len(L)):
+ inverses.append(inverses[-1]*L[-i])
+
+ # Finally computes [1/a0,...,1/an]
+ result=[inverses[-1]]
+ for i in range(2,len(L)+1):
+ result.append(inverses[-i]*multiples[i-2])
+ return result
+
+def product_theta_point(theta1,theta2):
+ a,b=theta1
+ c,d=theta2
+ return [a*c,b*c,a*d,b*d]