Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/theta_structures
diff options
context:
space:
mode:
authorRyan Rueger <git@rueg.re>2025-03-01 20:25:41 +0100
committerRyan Rueger <git@rueg.re>2025-03-01 22:11:11 +0100
commitd40de259097c5e8d8fd35539560ca7c3d47523e7 (patch)
tree18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/theta_structures
downloadpegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com> Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com> Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com> Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com> Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com> Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s] Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr> Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net> Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/theta_structures')
-rw-r--r--theta_lib/theta_structures/Theta_dim1.py98
-rw-r--r--theta_lib/theta_structures/Theta_dim2.py440
-rw-r--r--theta_lib/theta_structures/Theta_dim4.py351
-rw-r--r--theta_lib/theta_structures/Tuple_point.py106
-rw-r--r--theta_lib/theta_structures/montgomery_theta.py68
-rw-r--r--theta_lib/theta_structures/theta_helpers_dim2.py32
-rw-r--r--theta_lib/theta_structures/theta_helpers_dim4.py259
7 files changed, 1354 insertions, 0 deletions
diff --git a/theta_lib/theta_structures/Theta_dim1.py b/theta_lib/theta_structures/Theta_dim1.py
new file mode 100644
index 0000000..e8e94dd
--- /dev/null
+++ b/theta_lib/theta_structures/Theta_dim1.py
@@ -0,0 +1,98 @@
+from sage.all import *
+from ..utilities.supersingular import compute_linearly_independent_point
+from .montgomery_theta import (
+ montgomery_point_to_theta_point,
+ theta_point_to_montgomery_point,
+ torsion_to_theta_null_point,
+)
+
+
+class ThetaStructureDim1:
+ def __init__(self,E,P=None,Q=None):
+ self.E=E
+
+ a_inv=E.a_invariants()
+
+ A =a_inv[1]
+ if a_inv != (0,A,0,1,0):
+ raise ValueError("The elliptic curve E is not in the Montgomery model.")
+
+ if Q==None:
+ y2=A-2
+ y=y2.sqrt()
+ Q=E([-1,y,1])
+ P=compute_linearly_independent_point(E,Q,4)
+ else:
+ if Q[0]!=-1:
+ raise ValueError("You should enter a canonical 4-torsion basis. Q[0] should be -1.")
+
+ self.P=P
+ self.Q=Q
+
+ self._base_ring=E.base_ring()
+
+ self._point=ThetaPointDim1
+ self._null_point=self._point(self,torsion_to_theta_null_point(P))
+
+ def null_point(self):
+ """
+ """
+ return self._null_point
+
+ def base_ring(self):
+ """
+ """
+ return self._base_ring
+
+ def zero(self):
+ """
+ """
+ return self.null_point()
+
+ def elliptic_curve(self):
+ return self.E
+
+ def torsion_basis(self):
+ return (self.P,self.Q)
+
+ def __call__(self,coords):
+ r"""
+ Input: either a tuple or list of 2 coordinates or an elliptic curve point.
+
+ Output: the corresponding theta point for the self theta structure.
+ """
+ if isinstance(coords,tuple):
+ return self._point(self,coords)
+ elif isinstance(coords,list):
+ return self._point(self,coords)
+ else:
+ return self._point(self,montgomery_point_to_theta_point(self.null_point().coords(),coords))
+
+ def __repr__(self):
+ return f"Theta structure on {self.elliptic_curve()} with null point: {self.null_point()} induced by the 4-torsion basis {self.torsion_basis()}"
+
+ def to_montgomery_point(self,P):
+ return theta_point_to_montgomery_point(self.E,self.null_point().coords(),P.coords())
+
+
+class ThetaPointDim1:
+ def __init__(self, parent, coords):
+ """
+ """
+ if not isinstance(parent, ThetaStructureDim1):
+ raise ValueError("Entry parent should be a ThetaStructureDim1 object.")
+
+ self._parent = parent
+ self._coords = tuple(coords)
+
+
+ def coords(self):
+ return self._coords
+
+ def __repr__(self):
+ return f"Theta point with coordinates: {self.coords()}"
+
+
+
+
+
diff --git a/theta_lib/theta_structures/Theta_dim2.py b/theta_lib/theta_structures/Theta_dim2.py
new file mode 100644
index 0000000..0d9955a
--- /dev/null
+++ b/theta_lib/theta_structures/Theta_dim2.py
@@ -0,0 +1,440 @@
+# Sage Imports
+from sage.all import Integer
+from sage.structure.element import get_coercion_model, RingElement
+
+cm = get_coercion_model()
+
+from .theta_helpers_dim2 import batch_inversion, product_theta_point
+from .Theta_dim1 import ThetaStructureDim1
+from .Tuple_point import TuplePoint
+from ..basis_change.base_change_dim2 import apply_base_change_theta_dim2
+
+# =========================================== #
+# Class for Theta Structure (level-2) #
+# =========================================== #
+
+
+class ThetaStructureDim2:
+ """
+ Class for the Theta Structure in dimension 2, defined by its theta null point. This type
+ represents the generic domain/codomain of the (2,2)-isogeny in the theta model.
+ """
+
+ def __init__(self, null_point, null_point_dual=None):
+ if not len(null_point) == 4:
+ raise ValueError
+
+ self._base_ring = cm.common_parent(*(c.parent() for c in null_point))
+ self._point = ThetaPointDim2
+ self._precomputation = None
+
+ self._null_point = self._point(self, null_point)
+ self._null_point_dual = null_point_dual
+
+ def null_point(self):
+ """
+ Return the null point of the given theta structure
+ """
+ return self._null_point
+
+ def null_point_dual(self):
+ if self._null_point_dual==None:
+ self._null_point_dual = self._point.to_hadamard(*self.coords())
+ return self._null_point_dual
+
+ def base_ring(self):
+ """
+ Return the base ring of the common parent of the coordinates of the null point
+ """
+ return self._base_ring
+
+ def zero(self):
+ """
+ The additive identity is the theta null point
+ """
+ return self.null_point()
+
+ def zero_dual(self):
+ return self.null_point_dual()
+
+ def __repr__(self):
+ return f"Theta structure over {self.base_ring()} with null point: {self.null_point()}"
+
+ def coords(self):
+ """
+ Return the coordinates of the theta null point of the theta structure
+ """
+ return self.null_point().coords()
+
+ def hadamard(self):
+ """
+ Compute the Hadamard transformation of the theta structure
+ """
+ return ThetaStructureDim2(self.null_point_dual(),null_point_dual=self.coords())
+
+ def squared_theta(self):
+ """
+ Square the coefficients and then compute the Hadamard transformation of
+ the theta null point of the theta structure
+ """
+ return self.null_point().squared_theta()
+
+ def _arithmetic_precomputation(self):
+ """
+ Precompute 6 field elements used in arithmetic and isogeny computations
+ """
+ if self._precomputation is None:
+ a, b, c, d = self.null_point().coords()
+
+ # Technically this computes 4A^2, 4B^2, ...
+ # but as we take quotients this doesnt matter
+ # Cost: 4S
+ AA, BB, CC, DD = self.squared_theta()
+
+ # Precomputed constants for addition and doubling
+ b_inv, c_inv, d_inv, BB_inv, CC_inv, DD_inv = batch_inversion([
+ b, c, d, BB, CC, DD]
+ )
+
+ y0 = a * b_inv
+ z0 = a * c_inv
+ t0 = a * d_inv
+
+ Y0 = AA * BB_inv
+ Z0 = AA * CC_inv
+ T0 = AA * DD_inv
+
+ self._precomputation = (y0, z0, t0, Y0, Z0, T0)
+ return self._precomputation
+
+ def __call__(self, coords):
+ return self._point(self, coords)
+
+ def base_change_struct(self,N):
+ null_coords=self.null_point().coords()
+ new_null_coords=apply_base_change_theta_dim2(N,null_coords)
+ return ThetaStructure(new_null_coords)
+
+ def base_change_coords(self,N,P):
+ coords=P.coords()
+ new_coords=apply_base_change_theta_dim2(N,coords)
+ return self.__call__(new_coords)
+
+
+# =================================================== #
+# Class for Product Theta Structure (level-2) #
+# =================================================== #
+
+
+class ProductThetaStructureDim2(ThetaStructureDim2):
+ def __init__(self,*args):
+ r"""Defines the product theta structure at level 2 of 2 elliptic curves.
+
+ Input: Either
+ - 2 theta structures of dimension 1: T0, T1;
+ - 2 elliptic curves: E0, E1.
+ - 2 elliptic curves E0, E1 and their respective canonical 4-torsion basis B0, B1.
+ """
+ if len(args)==2:
+ theta_structures=list(args)
+ for k in range(2):
+ if not isinstance(theta_structures[k],ThetaStructureDim1):
+ theta_structures[k]=ThetaStructureDim1(theta_structures[k])
+ elif len(args)==4:
+ theta_structures=[ThetaStructureDim1(args[k],args[2+k][0],args[2+k][1]) for k in range(2)]
+ else:
+ raise ValueError("2 or 4 arguments expected but {} were given.\nYou should enter a list of 2 elliptic curves or ThetaStructureDim1\nor a list of 2 elliptic curves with a 4-torsion basis for each of them.".format(len(args)))
+
+ self._theta_structures=theta_structures
+
+ null_point=product_theta_point(theta_structures[0].zero().coords(),theta_structures[1].zero().coords())
+
+ ThetaStructureDim2.__init__(self,null_point)
+
+ def product_theta_point(self,theta_points):
+ t0,t1=theta_points[0].coords()
+ u0,u1=theta_points[1].coords()
+ return self._point(self,[t0*u0,t1*u0,t0*u1,t1*u1])
+
+ def __call__(self,point):
+ if isinstance(point,TuplePoint):
+ theta_points=[]
+ theta_structures=self._theta_structures
+ for i in range(2):
+ theta_points.append(theta_structures[i](point[i]))
+ return self.product_theta_point(theta_points)
+ else:
+ return self._point(self,point)
+
+ def to_theta_points(self,P):
+ coords=P.coords()
+ theta_coords=[(coords[0],coords[1]),(coords[1],coords[3])]
+ theta_points=[self._theta_structures[i](theta_coords[i]) for i in range(2)]
+ return theta_points
+
+ def to_tuple_point(self,P):
+ theta_points=self.to_theta_points(P)
+ montgomery_points=[self._theta_structures[i].to_montgomery_point(theta_points[i]) for i in range(2)]
+ return TuplePoint(montgomery_points)
+
+
+# ======================================= #
+# Class for Theta Point (level-2) #
+# ======================================= #
+
+
+class ThetaPointDim2:
+ """
+ A Theta Point in the level-2 Theta Structure is defined with four projective
+ coordinates
+
+ We cannot perform arbitrary arithmetic, but we can compute doubles and
+ differential addition, which like x-only points on the Kummer line, allows
+ for scalar multiplication
+ """
+
+ def __init__(self, parent, coords):
+ if not isinstance(parent, ThetaStructureDim2) and not isinstance(parent, ProductThetaStructureDim2):
+ raise ValueError
+
+ self._parent = parent
+ self._coords = tuple(coords)
+
+ self._hadamard = None
+ self._squared_theta = None
+
+ def parent(self):
+ """
+ Return the parent of the element, of type ThetaStructureDim2
+ """
+ return self._parent
+
+ def theta(self):
+ """
+ Return the parent theta structure of this ThetaPointDim2"""
+ return self.parent()
+
+ def coords(self):
+ """
+ Return the projective coordinates of the ThetaPointDim2
+ """
+ return self._coords
+
+ def is_zero(self):
+ """
+ An element is zero if it is equivalent to the null point of the parent
+ ThetaStrcuture
+ """
+ return self == self.parent().zero()
+
+ @staticmethod
+ def to_hadamard(x_00, x_10, x_01, x_11):
+ """
+ Compute the Hadamard transformation of four coordinates, using recursive
+ formula.
+ """
+ x_00, x_10 = (x_00 + x_10, x_00 - x_10)
+ x_01, x_11 = (x_01 + x_11, x_01 - x_11)
+ return x_00 + x_01, x_10 + x_11, x_00 - x_01, x_10 - x_11
+
+ def hadamard(self):
+ """
+ Compute the Hadamard transformation of this element
+ """
+ if self._hadamard is None:
+ self._hadamard = self.to_hadamard(*self.coords())
+ return self._hadamard
+
+ @staticmethod
+ def to_squared_theta(x, y, z, t):
+ """
+ Square the coordinates and then compute the Hadamard transform of the
+ input
+ """
+ return ThetaPointDim2.to_hadamard(x * x, y * y, z * z, t * t)
+
+ def squared_theta(self):
+ """
+ Compute the Squared Theta transformation of this element
+ which is the square operator followed by Hadamard.
+ """
+ if self._squared_theta is None:
+ self._squared_theta = self.to_squared_theta(*self.coords())
+ return self._squared_theta
+
+ def double(self):
+ """
+ Computes [2]*self
+
+ NOTE: Assumes that no coordinate is zero
+
+ Cost: 8S 6M
+ """
+ # If a,b,c,d = 0, then the codomain of A->A/K_2 is a product of
+ # elliptic curves with a non product theta structure.
+ # Unless we are very unlucky, A/K_1 will not be in this case, so we
+ # just need to Hadamard, double, and Hadamard inverse
+ # If A,B,C,D=0 then the domain itself is a product of elliptic
+ # curves with a non product theta structure. The Hadamard transform
+ # will not change this, we need a symplectic change of variable
+ # that puts us back in a product theta structure
+ y0, z0, t0, Y0, Z0, T0 = self.parent()._arithmetic_precomputation()
+
+ # Temp coordinates
+ # Cost 8S 3M
+ xp, yp, zp, tp = self.squared_theta()
+ xp = xp**2
+ yp = Y0 * yp**2
+ zp = Z0 * zp**2
+ tp = T0 * tp**2
+
+ # Final coordinates
+ # Cost 3M
+ X, Y, Z, T = self.to_hadamard(xp, yp, zp, tp)
+ X = X
+ Y = y0 * Y
+ Z = z0 * Z
+ T = t0 * T
+
+ coords = (X, Y, Z, T)
+ return self._parent(coords)
+
+ def diff_addition(P, Q, PQ):
+ """
+ Given the theta points of P, Q and P-Q computes the theta point of
+ P + Q.
+
+ NOTE: Assumes that no coordinate is zero
+
+ Cost: 8S 17M
+ """
+ # Extract out the precomputations
+ Y0, Z0, T0 = P.parent()._arithmetic_precomputation()[-3:]
+
+ # Transform with the Hadamard matrix and multiply
+ # Cost: 8S 7M
+ p1, p2, p3, p4 = P.squared_theta()
+ q1, q2, q3, q4 = Q.squared_theta()
+
+ xp = p1 * q1
+ yp = Y0 * p2 * q2
+ zp = Z0 * p3 * q3
+ tp = T0 * p4 * q4
+
+ # Final coordinates
+ PQx, PQy, PQz, PQt = PQ.coords()
+
+ # Note:
+ # We replace the four divisions by
+ # PQx, PQy, PQz, PQt by 10 multiplications
+ # Cost: 10M
+ PQxy = PQx * PQy
+ PQzt = PQz * PQt
+
+ X, Y, Z, T = P.to_hadamard(xp, yp, zp, tp)
+ X = X * PQzt * PQy
+ Y = Y * PQzt * PQx
+ Z = Z * PQxy * PQt
+ T = T * PQxy * PQz
+
+ coords = (X, Y, Z, T)
+ return P.parent()(coords)
+
+ def scale(self, n):
+ """
+ Scale all coordinates of the ThetaPointDim2 by `n`
+ """
+ x, y, z, t = self.coords()
+ if not isinstance(n, RingElement):
+ raise ValueError(f"Cannot scale by element {n} of type {type(n)}")
+ scaled_coords = (n * x, n * y, n * z, n * t)
+ return self._parent(scaled_coords)
+
+ def double_iter(self, m):
+ """
+ Compute [2^n] Self
+
+ NOTE: Assumes that no coordinate is zero at any point during the doubling
+ """
+ if not isinstance(m, Integer):
+ try:
+ m = Integer(m)
+ except:
+ raise TypeError(f"Cannot coerce input scalar {m = } to an integer")
+
+ if m.is_zero():
+ return self.parent().zero()
+
+ P1 = self
+ for _ in range(m):
+ P1 = P1.double()
+ return P1
+
+ def __mul__(self, m):
+ """
+ Uses Montgomery ladder to compute [m] Self
+
+ NOTE: Assumes that no coordinate is zero at any point during the doubling
+ """
+ # Make sure we're multiplying by something value
+ if not isinstance(m, (int, Integer)):
+ try:
+ m = Integer(m)
+ except:
+ raise TypeError(f"Cannot coerce input scalar {m = } to an integer")
+
+ # If m is zero, return the null point
+ if not m:
+ return self.parent().zero()
+
+ # We are with ±1 identified, so we take the absolute value of m
+ m = abs(m)
+
+ P0, P1 = self, self
+ P2 = P1.double()
+ # If we are multiplying by two, the chain stops here
+ if m == 2:
+ return P2
+
+ # Montgomery double and add.
+ for bit in bin(m)[3:]:
+ Q = P2.diff_addition(P1, P0)
+ if bit == "1":
+ P2 = P2.double()
+ P1 = Q
+ else:
+ P1 = P1.double()
+ P2 = Q
+
+ return P1
+
+ def __rmul__(self, m):
+ return self * m
+
+ def __imul__(self, m):
+ self = self * m
+ return self
+
+ def __eq__(self, other):
+ """
+ Check the quality of two ThetaPoints. Note that as this is a
+ projective equality, we must be careful for when certain coefficients may
+ be zero.
+ """
+ if not isinstance(other, ThetaPointDim2):
+ return False
+
+ a1, b1, c1, d1 = self.coords()
+ a2, b2, c2, d2 = other.coords()
+
+ if d1 != 0 or d2 != 0:
+ return all([a1 * d2 == a2 * d1, b1 * d2 == b2 * d1, c1 * d2 == c2 * d1])
+ elif c1 != 0 or c2 != 0:
+ return all([a1 * c2 == a2 * c1, b1 * c2 == b2 * c1])
+ elif b1 != 0 or b2 != 0:
+ return a1 * b2 == a2 * b1
+ else:
+ return True
+
+ def __repr__(self):
+ return f"Theta point with coordinates: {self.coords()}"
diff --git a/theta_lib/theta_structures/Theta_dim4.py b/theta_lib/theta_structures/Theta_dim4.py
new file mode 100644
index 0000000..7851c56
--- /dev/null
+++ b/theta_lib/theta_structures/Theta_dim4.py
@@ -0,0 +1,351 @@
+from sage.all import *
+from sage.structure.element import get_coercion_model
+
+from .theta_helpers_dim4 import (
+ hadamard,
+ batch_inversion,
+ product_theta_point_dim4,
+ product_to_theta_points_dim4,
+ product_theta_point_dim2_dim4,
+ product_to_theta_points_dim4_dim2,
+ act_point,
+ squared,
+)
+from .Theta_dim1 import ThetaStructureDim1
+from .Tuple_point import TuplePoint
+from ..basis_change.base_change_dim4 import (
+ apply_base_change_theta_dim4,
+ random_symplectic_matrix,
+ base_change_theta_dim4,
+)
+
+cm = get_coercion_model()
+
+
+class ThetaStructureDim4:
+ def __init__(self,null_point,null_point_dual=None,inv_null_point_dual_sq=None):
+ r"""
+ INPUT:
+ - null_point: theta-constants.
+ - inv_null_point_dual_sq: inverse of the squares of dual theta-constants, if provided
+ (meant to prevent duplicate computation, since this data is already computed when the
+ codomain of an isogeny is computed).
+ """
+ if not len(null_point) == 16:
+ raise ValueError("Entry null_point should have 16 coordinates.")
+
+ self._base_ring = cm.common_parent(*(c.parent() for c in null_point))
+ self._point = ThetaPointDim4
+ self._null_point = self._point(self, null_point)
+ self._null_point_dual=null_point_dual
+ self._inv_null_point=None
+ self._inv_null_point_dual_sq=inv_null_point_dual_sq
+
+ def null_point(self):
+ """
+ """
+ return self._null_point
+
+ def null_point_dual(self):
+ if self._null_point_dual==None:
+ self._null_point_dual=hadamard(self._null_point.coords())
+ return self._null_point_dual
+
+ def base_ring(self):
+ """
+ """
+ return self._base_ring
+
+ def zero(self):
+ """
+ """
+ return self.null_point()
+
+ def zero_dual(self):
+ return self.null_point_dual()
+
+ def __repr__(self):
+ return f"Theta structure over {self.base_ring()} with null point: {self.null_point()}"
+
+ def __call__(self,coords):
+ return self._point(self,coords)
+
+ def act_null(self,I,J):
+ r"""
+ Point of 2-torsion.
+
+ INPUT:
+ - I, J: two 4-tuples of indices in {0,1}.
+
+ OUTPUT: the action of (I,\chi_J) on the theta null point given by:
+ (I,\chi_J)*P=(\chi_J(I+K)^{-1}P[I+K])_K
+ """
+ return self.null_point().act_point(I,J)
+
+ def is_K2(self,B):
+ r"""
+ Given a symplectic decomposition A[2]=K_1\oplus K_2 canonically
+ induced by the theta-null point, determines if B is the canonical
+ basis of K_2 given by act_nul(0,\delta_i)_{1\leq i\leq 4}.
+
+ INPUT:
+ - B: Basis of 4 points of 2-torsion.
+
+ OUTPUT: Boolean True if and only if B is the canonical basis of K_2.
+ """
+ I0=(0,0,0,0)
+ if B[0]!=self.act_null(I0,(1,0,0,0)):
+ return False
+ if B[1]!=self.act_null(I0,(0,1,0,0)):
+ return False
+ if B[2]!=self.act_null(I0,(0,0,1,0)):
+ return False
+ if B[3]!=self.act_null(I0,(0,0,0,1)):
+ return False
+ return True
+
+ def base_change_struct(self,N):
+ null_coords=self.null_point().coords()
+ new_null_coords=apply_base_change_theta_dim4(N,null_coords)
+ return ThetaStructureDim4(new_null_coords)
+
+ def base_change_coords(self,N,P):
+ coords=P.coords()
+ new_coords=apply_base_change_theta_dim4(N,coords)
+ return self.__call__(new_coords)
+
+ #@cached_method
+ def _arithmetic_precomputation(self):
+ r"""
+ Initializes the precomputation containing the inverse of the theta-constants in standard
+ and dual (Hadamard transformed) theta-coordinates. Assumes no theta-constant is zero.
+ """
+ O=self.null_point()
+ if all([O[k]!=0 for k in range(16)]):
+ self._inv_null_point=batch_inversion(O.coords())
+ if self._inv_null_point_dual_sq==None:
+ U_chi_0_sq=hadamard(squared(O.coords()))
+ if all([U_chi_0_sq[k]!=0 for k in range(16)]):
+ self._inv_null_point_dual_sq=batch_inversion(U_chi_0_sq)
+ self._arith_base_change=False
+ else:
+ self._arith_base_change=True
+ self._arithmetic_base_change()
+ #print("Zero dual theta constants.\nRandom symplectic base change is being used for duplication.\nDoublings are more costly than expected.")
+ else:
+ self._arith_base_change=True
+ self._arithmetic_base_change()
+ #print("Zero theta constants.\nRandom symplectic base change is being used for duplication.\nDoublings are more costly than expected.")
+
+ def _arithmetic_base_change(self,max_iter=50):
+ F=self._base_ring
+ if F.degree() == 2:
+ i=self._base_ring.gen()
+ else:
+ assert(F.degree() == 1)
+ Fp2 = GF((F.characteristic(), 2), name='i', modulus=var('x')**2 + 1)
+ i=Fp2.gen()
+
+ count=0
+ O=self.null_point()
+ while count<max_iter:
+ count+=1
+ M=random_symplectic_matrix(4)
+ N=base_change_theta_dim4(M,i)
+
+ NO=apply_base_change_theta_dim4(N,O)
+ NU_chi_0_sq=hadamard(squared(NO))
+
+ if all([NU_chi_0_sq[k]!=0 for k in range(16)]) and all([NO[k]!=0 for k in range(16)]):
+ self._arith_base_change_matrix=N
+ self._arith_base_change_matrix_inv=N.inverse()
+ self._inv_null_point=batch_inversion(NO)
+ self._inv_null_point_dual_sq=batch_inversion(NU_chi_0_sq)
+ break
+
+ def has_suitable_doubling(self):
+ O=self.null_point()
+ UO=hadamard(O.coords())
+ if all([O[k]!=0 for k in range(16)]) and all([UO[k]!=0 for k in range(16)]):
+ return True
+ else:
+ return False
+
+ def hadamard(self):
+ return ThetaStructureDim4(self.null_point_dual())
+
+ def hadamard_change_coords(self,P):
+ new_coords=hadamard(P)
+ return self.__call__(new_coords)
+
+
+class ProductThetaStructureDim1To4(ThetaStructureDim4):
+ def __init__(self,*args):
+ r"""Defines the product theta structure at level 2 of 4 elliptic curves.
+
+ Input: Either
+ - 4 theta structures of dimension 1: T0, T1, T2, T3;
+ - 4 elliptic curves: E0, E1, E2, E3.
+ - 4 elliptic curves E0, E1, E2, E3 and their respective canonical 4-torsion basis B0, B1, B2, B3.
+ """
+ if len(args)==4:
+ theta_structures=list(args)
+ for k in range(4):
+ if not isinstance(theta_structures[k],ThetaStructureDim1):
+ try:
+ theta_structures[k]=ThetaStructureDim1(theta_structures[k])
+ except:
+ pass
+ elif len(args)==8:
+ theta_structures=[ThetaStructureDim1(args[k],args[4+k][0],args[4+k][1]) for k in range(4)]
+ else:
+ raise ValueError("4 or 8 arguments expected but {} were given.\nYou should enter a list of 4 elliptic curves or ThetaStructureDim1\nor a list of 4 elliptic curves with a 4-torsion basis for each of them.".format(len(args)))
+
+ self._theta_structures=theta_structures
+
+ null_point=product_theta_point_dim4(theta_structures[0].zero().coords(),theta_structures[1].zero().coords(),
+ theta_structures[2].zero().coords(),theta_structures[3].zero().coords())
+
+ ThetaStructureDim4.__init__(self,null_point)
+
+ def product_theta_point(self,theta_points):
+ return self._point(self,product_theta_point_dim4(theta_points[0].coords(),theta_points[1].coords(),
+ theta_points[2].coords(),theta_points[3].coords()))
+
+ def __call__(self,point):
+ if isinstance(point,TuplePoint):
+ theta_points=[]
+ theta_structures=self._theta_structures
+ for i in range(4):
+ theta_points.append(theta_structures[i](point[i]))
+ return self.product_theta_point(theta_points)
+ else:
+ return self._point(self,point)
+
+ def to_theta_points(self,P):
+ theta_coords=product_to_theta_points_dim4(P)
+ theta_points=[self._theta_structures[i](theta_coords[i]) for i in range(4)]
+ return theta_points
+
+ def to_tuple_point(self,P):
+ theta_points=self.to_theta_points(P)
+ montgomery_points=[self._theta_structures[i].to_montgomery_point(theta_points[i]) for i in range(4)]
+ return TuplePoint(montgomery_points)
+
+class ProductThetaStructureDim2To4(ThetaStructureDim4):
+ def __init__(self,theta1,theta2):
+ self._theta_structures=(theta1,theta2)
+
+ null_point=product_theta_point_dim2_dim4(theta1.zero().coords(),theta2.zero().coords())
+
+ ThetaStructureDim4.__init__(self,null_point)
+
+ def product_theta_point(self,P1,P2):
+ return self._point(self,product_theta_point_dim2_dim4(P1.coords(),P2.coords()))
+
+ def __call__(self,point):
+ return self._point(self,point)
+
+ def to_theta_points(self,P):
+ theta_coords=product_to_theta_points_dim4_dim2(P)
+ theta_points=[self._theta_structures[i](theta_coords[i]) for i in range(2)]
+ return theta_points
+
+class ThetaPointDim4:
+ def __init__(self, parent, coords):
+ """
+ """
+ if not isinstance(parent, ThetaStructureDim4):
+ raise ValueError("Entry parent should be a ThetaStructureDim4 object.")
+
+ self._parent = parent
+ self._coords = tuple(coords)
+
+ def parent(self):
+ """
+ """
+ return self._parent
+
+ def theta(self):
+ """
+ """
+ return self.parent()
+
+ def coords(self):
+ """
+ """
+ return self._coords
+
+ def is_zero(self):
+ """
+ """
+ return self == self.parent().zero()
+
+ def __eq__(self, other):
+ P=self.coords()
+ Q=other.coords()
+
+ k0=0
+ while k0<15 and P[k0]==0:
+ k0+=1
+
+ for l in range(16):
+ if P[l]*Q[k0]!=Q[l]*P[k0]:
+ return False
+ return True
+
+ def __repr__(self):
+ return f"Theta point with coordinates: {self.coords()}"
+
+ def __getitem__(self,i):
+ return self._coords[i]
+
+ def scale(self,lamb):
+ if lamb==0:
+ raise ValueError("Entry lamb should be non-zero.")
+
+ P=self.coords()
+ return self._parent([lamb*x for x in P])
+
+ def act_point(self,I,J):
+ r"""
+ Translation by a point of 2-torsion.
+
+ Input:
+ - I, J: two 4-tuples of indices in {0,1}.
+
+ Output: the action of (I,\chi_J) on P given by:
+ (I,\chi_J)*P=(\chi_J(I+K)^{-1}P[I+K])_K
+ """
+ return self._parent(act_point(self._coords,I,J))
+
+ def double(self):
+ ## This formula is projective.
+ ## Works only when theta constants are non-zero.
+ P=self.coords()
+ if self.parent()._inv_null_point==None or self.parent()._inv_null_point_dual_sq==None:
+ self.parent()._arithmetic_precomputation()
+ inv_O,inv_U_chi_0_sq=self.parent()._inv_null_point,self.parent()._inv_null_point_dual_sq
+
+ if self.parent()._arith_base_change:
+ P=apply_base_change_theta_dim4(self.parent()._arith_base_change_matrix,P)
+
+ U_chi_P=squared(hadamard(squared(P)))
+ for chi in range(16):
+ U_chi_P[chi]*=inv_U_chi_0_sq[chi]
+
+ theta_2P = list(hadamard(U_chi_P))
+ for i in range(16):
+ theta_2P[i] *= inv_O[i]
+
+ if self.parent()._arith_base_change:
+ theta_2P=apply_base_change_theta_dim4(self.parent()._arith_base_change_matrix_inv,theta_2P)
+
+ return self._parent(theta_2P)
+
+ def double_iter(self,n):
+ ## Computes 2**n*self
+ Q=self
+ for i in range(n):
+ Q=Q.double()
+ return Q
diff --git a/theta_lib/theta_structures/Tuple_point.py b/theta_lib/theta_structures/Tuple_point.py
new file mode 100644
index 0000000..aac248b
--- /dev/null
+++ b/theta_lib/theta_structures/Tuple_point.py
@@ -0,0 +1,106 @@
+from sage.all import *
+from ..utilities.discrete_log import weil_pairing_pari
+
+class TuplePoint:
+ def __init__(self,*args):
+ if len(args)==1:
+ self._points=list(args[0])
+ else:
+ self._points=list(args)
+
+ def points(self):
+ return self._points
+
+ def parent_curves(self):
+ return [x.curve() for x in self._points]
+
+ def parent_curve(self,i):
+ return self._points[i].curve()
+
+ def n_points(self):
+ return len(self._points)
+
+ def is_zero(self):
+ return all([self._points[i]==0 for i in range(self.n_points())])
+
+ def __repr__(self):
+ return str(self._points)
+
+ def __getitem__(self,i):
+ return self._points[i]
+
+ def __setitem__(self,i,P):
+ self._points[i]=P
+
+ def __eq__(self,other):
+ n_self=self.n_points()
+ n_other=self.n_points()
+ return n_self==n_other and all([self._points[i]==other._points[i] for i in range(n_self)])
+
+ def __add__(self,other):
+ n_self=self.n_points()
+ n_other=self.n_points()
+
+ if n_self!=n_other:
+ raise ValueError("Cannot add TuplePoint of distinct lengths {} and {}.".format(n_self,n_other))
+
+ points=[]
+ for i in range(n_self):
+ points.append(self._points[i]+other._points[i])
+ return self.__class__(points)
+
+ def __sub__(self,other):
+ n_self=self.n_points()
+ n_other=self.n_points()
+
+ if n_self!=n_other:
+ raise ValueError("Cannot substract TuplePoint of distinct lengths {} and {}.".format(n_self,n_other))
+
+ points=[]
+ for i in range(n_self):
+ points.append(self._points[i]-other._points[i])
+ return self.__class__(points)
+
+ def __neg__(self):
+ n_self=self.n_points()
+ points=[]
+ for i in range(n_self):
+ points.append(-self._points[i])
+ return self.__class__(points)
+
+ def __mul__(self,m):
+ n_self=self.n_points()
+ points=[]
+ for i in range(n_self):
+ points.append(m*self._points[i])
+ return self.__class__(points)
+
+ def __rmul__(self,m):
+ return self*m
+
+ def double_iter(self,n):
+ result=self
+ for i in range(n):
+ result=2*result
+ return result
+
+ def weil_pairing(self,other,n):
+ n_self=self.n_points()
+ n_other=self.n_points()
+
+ if n_self!=n_other:
+ raise ValueError("Cannot compute the Weil pairing of TuplePoint of distinct lengths {} and {}.".format(n_self,n_other))
+
+ zeta=1
+ for i in range(n_self):
+ zeta*=weil_pairing_pari(self._points[i],other._points[i],n)
+
+ return zeta
+
+
+
+
+
+
+
+
diff --git a/theta_lib/theta_structures/montgomery_theta.py b/theta_lib/theta_structures/montgomery_theta.py
new file mode 100644
index 0000000..6dddb2b
--- /dev/null
+++ b/theta_lib/theta_structures/montgomery_theta.py
@@ -0,0 +1,68 @@
+from sage.all import *
+
+def torsion_to_theta_null_point(P):
+ r=P[0]
+ s=P[2]
+ return (r+s,r-s)
+
+def montgomery_point_to_theta_point(O,P):
+ if P[0]==P[2]==0:
+ return O
+ else:
+ a,b=O
+ return (a*(P[0]-P[2]),b*(P[0]+P[2]))
+
+def theta_point_to_montgomery_point(E,O,P,twist=False):
+ a,b=O
+
+ x=a*P[1]+b*P[0]
+ z=a*P[1]-b*P[0]
+
+ if twist:
+ x=-x
+
+ if z==0:
+ return E(0)
+ else:
+ x=x/z
+
+ a_inv=E.a_invariants()
+
+ A =a_inv[1]
+ if a_inv != (0,A,0,1,0):
+ raise ValueError("The elliptic curve E is not in the Montgomery model.")
+
+ y2=x*(x**2+A*x+1)
+ if not is_square(y2):
+ raise ValueError("The Montgomery point is not on the base field.")
+ else:
+ y=y2.sqrt()
+ return E([x,y,1])
+
+def lift_kummer_montgomery_point(E,x,z=1):
+ if z==0:
+ return E(0)
+ elif z!=1:
+ x=x/z
+
+ a_inv=E.a_invariants()
+
+ A =a_inv[1]
+ if a_inv != (0,A,0,1,0):
+ raise ValueError("The elliptic curve E is not in the Montgomery model.")
+
+ y2=x*(x**2+A*x+1)
+ if not is_square(y2):
+ raise ValueError("The Montgomery point is not on the base field.")
+ else:
+ y=y2.sqrt()
+ return E([x,y,1])
+
+def null_point_to_montgomery_coeff(a,b):
+ return -2*(a**4+b**4)/(a**4-b**4)
+
+
+
+
+
+
diff --git a/theta_lib/theta_structures/theta_helpers_dim2.py b/theta_lib/theta_structures/theta_helpers_dim2.py
new file mode 100644
index 0000000..a57789d
--- /dev/null
+++ b/theta_lib/theta_structures/theta_helpers_dim2.py
@@ -0,0 +1,32 @@
+from sage.all import *
+
+def batch_inversion(L):
+ r"""Does n inversions in 3(n-1)M+1I.
+
+ Input:
+ - L: list of elements to invert.
+
+ Output:
+ - [1/x for x in L]
+ """
+ # Given L=[a0,...,an]
+ # Computes multiples=[a0, a0.a1, ..., a0...an]
+ multiples=[L[0]]
+ for ai in L[1:]:
+ multiples.append(multiples[-1]*ai)
+
+ # Computes inverses=[1/(a0...an),...,1/a0]
+ inverses=[1/multiples[-1]]
+ for i in range(1,len(L)):
+ inverses.append(inverses[-1]*L[-i])
+
+ # Finally computes [1/a0,...,1/an]
+ result=[inverses[-1]]
+ for i in range(2,len(L)+1):
+ result.append(inverses[-i]*multiples[i-2])
+ return result
+
+def product_theta_point(theta1,theta2):
+ a,b=theta1
+ c,d=theta2
+ return [a*c,b*c,a*d,b*d]
diff --git a/theta_lib/theta_structures/theta_helpers_dim4.py b/theta_lib/theta_structures/theta_helpers_dim4.py
new file mode 100644
index 0000000..29599b0
--- /dev/null
+++ b/theta_lib/theta_structures/theta_helpers_dim4.py
@@ -0,0 +1,259 @@
+from sage.all import *
+import itertools
+
+## Index management
+@cached_function
+def index_to_multindex(k):
+ r"""
+ Input:
+ - k: integer between 0 and 15.
+
+ Output: binary decomposition of k.
+ """
+ L_ind=[]
+ l=k
+ for i in range(4):
+ L_ind.append(l%2)
+ l=l//2
+ return tuple(L_ind)
+
+@cached_function
+def multindex_to_index(*args):
+ r"""
+ Input: 4 elements i0,i1,i2,i3 in {0,1}.
+
+ Output: k=i0+2*i1+4*i2+8*i3.
+ """
+ if len(args)==4:
+ i0,i1,i2,i3=args
+ else:
+ i0,i1,i2,i3=args[0]
+ return i0+2*i1+4*i2+8*i3
+
+@cached_function
+def scal_prod(i,j):
+ r"""
+ Input: Two integers i and j in {0,...,15}.
+
+ Output: Scalar product of the bits of i and j mod 2.
+ """
+ return (int(i)&int(j)).bit_count()%2
+
+def act_point(P,I,J):
+ r"""
+ Input:
+ - P: a point with 16 coordinates.
+ - I, J: two 4-tuples of indices in {0,1}.
+
+ Output: the action of (I,\chi_J) on P given by:
+ (I,\chi_J)*P=(\chi_J(I+K)^{-1}P[I+K])_K
+ """
+ Q=[]
+ i=multindex_to_index(I)
+ j=multindex_to_index(J)
+ for k in range(16):
+ ipk=i^k
+ Q.append((-1)**scal_prod(ipk,j)*P[ipk])
+ return Q
+
+## Product of theta points
+def product_theta_point_dim4(P0,P1,P2,P3):
+ # Computes the product theta coordinates of a product of 4 elliptic curves.
+ P=[0 for k in range(16)]
+ for i0, i1, i2, i3 in itertools.product([0,1],repeat=4):
+ P[multindex_to_index(i0,i1,i2,i3)]=P0[i0]*P1[i1]*P2[i2]*P3[i3]
+ return P
+
+def product_theta_point_dim2_dim4(P0,P1):
+ # Computes the product theta coordinates of a product of 2 abelian surfaces.
+ P=[0 for k in range(16)]
+ for i0, i1, i2, i3 in itertools.product([0,1],repeat=4):
+ P[multindex_to_index(i0,i1,i2,i3)]=P0[i0+2*i1]*P1[i2+2*i3]
+ return P
+
+## 4-dimensional product Theta point to 1-dimensional Theta points
+def product_to_theta_points_dim4(P):
+ Fp2=P[0].parent()
+ d_Pi={0:None,1:None,2:None,3:None}
+ d_index_ratios={0:None,1:None,2:None,3:None}# Index of numertors/denominators to compute the theta points.
+ for k in range(4):
+ is_zero=True# theta_1(Pk)=0
+ for I in itertools.product([0,1],repeat=3):
+ J=list(I)
+ J.insert(k,1)
+ j=multindex_to_index(*J)
+ if P[j]!=0:
+ is_zero=False
+ d_index_ratios[k]=[j^(2**k),j]
+ break
+ if is_zero:
+ d_Pi[k]=(Fp2(1),Fp2(0))
+ L_num=[]
+ L_denom=[]
+ d_index_num_denom={}
+ for k in range(4):
+ if d_Pi[k]==None:# Point has non-zero coordinate theta_1
+ d_index_num_denom[k]=len(L_num)
+ L_num.append(P[d_index_ratios[k][0]])
+ L_denom.append(P[d_index_ratios[k][1]])
+ L_denom=batch_inversion(L_denom)
+ for k in range(4):
+ if d_Pi[k]==None:
+ d_Pi[k]=(L_num[d_index_num_denom[k]]*L_denom[d_index_num_denom[k]],Fp2(1))
+ return d_Pi[0],d_Pi[1],d_Pi[2],d_Pi[3]
+
+## 4-dimensional product Theta point to 2-dimensional Theta points
+def product_to_theta_points_dim4_dim2(P):
+ Fp2=P[0].parent()
+ k0=0# Index of the denominator k0=multindex_to_index(I0,J0) and
+ # we divide by theta_{I0,J0}=theta_{I0}*theta_{J0}!=0
+ while k0<=15 and P[k0]==0:
+ k0+=1
+ i0, j0 = k0%4, k0//4
+ inv_theta_k0=1/P[k0]
+ theta_P1=[]
+ theta_P2=[]
+ for i in range(4):
+ if i==i0:
+ theta_P1.append(1)
+ else:
+ theta_P1.append(P[i+4*j0]*inv_theta_k0)
+ for j in range(4):
+ if j==j0:
+ theta_P2.append(1)
+ else:
+ theta_P2.append(P[i0+4*j]*inv_theta_k0)
+ return theta_P1, theta_P2
+
+
+
+
+
+## Usual theta transformations
+@cached_function
+def inv_16(F):
+ return 1/F(16)
+
+def hadamard2(x,y):
+ return (x+y, x-y)
+
+def hadamard4(x,y,z,t):
+ x,y=hadamard2(x,y)
+ z,t=hadamard2(z,t)
+ return (x+z, y+t, x-z, y-t)
+
+def hadamard8(a,b,c,d,e,f,g,h):
+ a,b,c,d=hadamard4(a,b,c,d)
+ e,f,g,h=hadamard4(e,f,g,h)
+ return (a+e, b+f, c+g, d+h, a-e, b-f, c-g, d-h)
+
+def hadamard16(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p):
+ a,b,c,d,e,f,g,h=hadamard8(a,b,c,d,e,f,g,h)
+ i,j,k,l,m,n,o,p=hadamard8(i,j,k,l,m,n,o,p)
+ return (a+i, b+j, c+k, d+l, e+m, f+n, g+o, h+p, a-i, b-j, c-k, d-l, e-m, f-n, g-o, h-p)
+
+def hadamard_inline(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p):
+ a,b=a+b,a-b
+ c,d=c+d,c-d
+ e,f=e+f,e-f
+ g,h=g+h,g-h
+ i,j=i+j,i-j
+ k,l=k+l,k-l
+ m,n=m+n,m-n
+ o,p=o+p,o-p
+ a,b,c,d=a+c,b+d,a-c,b-d
+ e,f,g,h=e+g,f+h,e-g,f-h
+ i,j,k,l=i+k,j+l,i-k,j-l
+ m,n,o,p=m+o,n+p,m-o,n-p
+ a,b,c,d,e,f,g,h=a+e, b+f, c+g, d+h, a-e, b-f, c-g, d-h
+ i,j,k,l,m,n,o,p=i+m,j+n,k+o,l+p,i-m,j-n,k-o,l-p
+ return (a+i, b+j, c+k, d+l, e+m, f+n, g+o, h+p, a-i, b-j, c-k, d-l, e-m, f-n, g-o, h-p)
+
+def hadamard(P):
+ return hadamard16(*P)
+ #return hadamard_inline(*P)
+
+def hadamard_inverse(P):
+ H_inv_P=[]
+ C=inv_16(P[0].parent())
+ for j in range(16):
+ HP.append(0)
+ for k in range(16):
+ if scal_prod(k,j)==0:
+ H_inv_P[j]+=P[k]
+ else:
+ H_inv_P[j]-=P[k]
+ H_inv_P[j]=H_inv_P[j]*C
+ return H_inv_P
+
+def squared(P):
+ return [x**2 for x in P]
+
+def batch_inversion(L):
+ r"""Does n inversions in 3(n-1)M+1I.
+
+ Input:
+ - L: list of elements to invert.
+
+ Output:
+ - [1/x for x in L]
+ """
+ # Given L=[a0,...,an]
+ # Computes multiples=[a0, a0.a1, ..., a0...an]
+ multiples=[L[0]]
+ for ai in L[1:]:
+ multiples.append(multiples[-1]*ai)
+
+ # Computes inverses=[1/(a0...an),...,1/a0]
+ inverses=[1/multiples[-1]]
+ for i in range(1,len(L)):
+ inverses.append(inverses[-1]*L[-i])
+
+ # Finally computes [1/a0,...,1/an]
+ result=[inverses[-1]]
+ for i in range(2,len(L)+1):
+ result.append(inverses[-i]*multiples[i-2])
+ return result
+
+
+## Functions to handle zero theta coordinates
+def find_zeros(P):
+ L_ind_zeros=[]
+ for i in range(16):
+ if P[i]==0:
+ L_ind_zeros.append(i)
+ return L_ind_zeros
+
+def find_translates(L_ind_zeros):
+ L_ind_non_zero=[]
+ L_ind_origin=L_ind_zeros.copy()
+
+ for i in range(16):
+ if i not in L_ind_zeros:
+ L_ind_non_zero.append(i)
+
+ L_trans=[]
+ while L_ind_origin!=[]:
+ n_target_max=0
+ ind_trans_max=0
+ for k in range(16):
+ trans=[x^k for x in L_ind_origin]
+ n_target=0
+ for y in trans:
+ if y in L_ind_non_zero:
+ n_target+=1
+ if n_target>n_target_max:
+ n_target_max=n_target
+ ind_trans_max=k
+ L_trans.append(ind_trans_max)
+ L_ind_remove=[]
+ for x in L_ind_origin:
+ if x^ind_trans_max in L_ind_non_zero:
+ L_ind_remove.append(x)
+ for x in L_ind_remove:
+ L_ind_origin.remove(x)
+ return L_trans
+
+
+
+