Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/theta_structures/Theta_dim2.py
diff options
context:
space:
mode:
authorRyan Rueger <git@rueg.re>2025-03-01 20:25:41 +0100
committerRyan Rueger <git@rueg.re>2025-03-01 22:11:11 +0100
commitd40de259097c5e8d8fd35539560ca7c3d47523e7 (patch)
tree18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/theta_structures/Theta_dim2.py
downloadpegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com> Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com> Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com> Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com> Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com> Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s] Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr> Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net> Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/theta_structures/Theta_dim2.py')
-rw-r--r--theta_lib/theta_structures/Theta_dim2.py440
1 files changed, 440 insertions, 0 deletions
diff --git a/theta_lib/theta_structures/Theta_dim2.py b/theta_lib/theta_structures/Theta_dim2.py
new file mode 100644
index 0000000..0d9955a
--- /dev/null
+++ b/theta_lib/theta_structures/Theta_dim2.py
@@ -0,0 +1,440 @@
+# Sage Imports
+from sage.all import Integer
+from sage.structure.element import get_coercion_model, RingElement
+
+cm = get_coercion_model()
+
+from .theta_helpers_dim2 import batch_inversion, product_theta_point
+from .Theta_dim1 import ThetaStructureDim1
+from .Tuple_point import TuplePoint
+from ..basis_change.base_change_dim2 import apply_base_change_theta_dim2
+
+# =========================================== #
+# Class for Theta Structure (level-2) #
+# =========================================== #
+
+
+class ThetaStructureDim2:
+ """
+ Class for the Theta Structure in dimension 2, defined by its theta null point. This type
+ represents the generic domain/codomain of the (2,2)-isogeny in the theta model.
+ """
+
+ def __init__(self, null_point, null_point_dual=None):
+ if not len(null_point) == 4:
+ raise ValueError
+
+ self._base_ring = cm.common_parent(*(c.parent() for c in null_point))
+ self._point = ThetaPointDim2
+ self._precomputation = None
+
+ self._null_point = self._point(self, null_point)
+ self._null_point_dual = null_point_dual
+
+ def null_point(self):
+ """
+ Return the null point of the given theta structure
+ """
+ return self._null_point
+
+ def null_point_dual(self):
+ if self._null_point_dual==None:
+ self._null_point_dual = self._point.to_hadamard(*self.coords())
+ return self._null_point_dual
+
+ def base_ring(self):
+ """
+ Return the base ring of the common parent of the coordinates of the null point
+ """
+ return self._base_ring
+
+ def zero(self):
+ """
+ The additive identity is the theta null point
+ """
+ return self.null_point()
+
+ def zero_dual(self):
+ return self.null_point_dual()
+
+ def __repr__(self):
+ return f"Theta structure over {self.base_ring()} with null point: {self.null_point()}"
+
+ def coords(self):
+ """
+ Return the coordinates of the theta null point of the theta structure
+ """
+ return self.null_point().coords()
+
+ def hadamard(self):
+ """
+ Compute the Hadamard transformation of the theta structure
+ """
+ return ThetaStructureDim2(self.null_point_dual(),null_point_dual=self.coords())
+
+ def squared_theta(self):
+ """
+ Square the coefficients and then compute the Hadamard transformation of
+ the theta null point of the theta structure
+ """
+ return self.null_point().squared_theta()
+
+ def _arithmetic_precomputation(self):
+ """
+ Precompute 6 field elements used in arithmetic and isogeny computations
+ """
+ if self._precomputation is None:
+ a, b, c, d = self.null_point().coords()
+
+ # Technically this computes 4A^2, 4B^2, ...
+ # but as we take quotients this doesnt matter
+ # Cost: 4S
+ AA, BB, CC, DD = self.squared_theta()
+
+ # Precomputed constants for addition and doubling
+ b_inv, c_inv, d_inv, BB_inv, CC_inv, DD_inv = batch_inversion([
+ b, c, d, BB, CC, DD]
+ )
+
+ y0 = a * b_inv
+ z0 = a * c_inv
+ t0 = a * d_inv
+
+ Y0 = AA * BB_inv
+ Z0 = AA * CC_inv
+ T0 = AA * DD_inv
+
+ self._precomputation = (y0, z0, t0, Y0, Z0, T0)
+ return self._precomputation
+
+ def __call__(self, coords):
+ return self._point(self, coords)
+
+ def base_change_struct(self,N):
+ null_coords=self.null_point().coords()
+ new_null_coords=apply_base_change_theta_dim2(N,null_coords)
+ return ThetaStructure(new_null_coords)
+
+ def base_change_coords(self,N,P):
+ coords=P.coords()
+ new_coords=apply_base_change_theta_dim2(N,coords)
+ return self.__call__(new_coords)
+
+
+# =================================================== #
+# Class for Product Theta Structure (level-2) #
+# =================================================== #
+
+
+class ProductThetaStructureDim2(ThetaStructureDim2):
+ def __init__(self,*args):
+ r"""Defines the product theta structure at level 2 of 2 elliptic curves.
+
+ Input: Either
+ - 2 theta structures of dimension 1: T0, T1;
+ - 2 elliptic curves: E0, E1.
+ - 2 elliptic curves E0, E1 and their respective canonical 4-torsion basis B0, B1.
+ """
+ if len(args)==2:
+ theta_structures=list(args)
+ for k in range(2):
+ if not isinstance(theta_structures[k],ThetaStructureDim1):
+ theta_structures[k]=ThetaStructureDim1(theta_structures[k])
+ elif len(args)==4:
+ theta_structures=[ThetaStructureDim1(args[k],args[2+k][0],args[2+k][1]) for k in range(2)]
+ else:
+ raise ValueError("2 or 4 arguments expected but {} were given.\nYou should enter a list of 2 elliptic curves or ThetaStructureDim1\nor a list of 2 elliptic curves with a 4-torsion basis for each of them.".format(len(args)))
+
+ self._theta_structures=theta_structures
+
+ null_point=product_theta_point(theta_structures[0].zero().coords(),theta_structures[1].zero().coords())
+
+ ThetaStructureDim2.__init__(self,null_point)
+
+ def product_theta_point(self,theta_points):
+ t0,t1=theta_points[0].coords()
+ u0,u1=theta_points[1].coords()
+ return self._point(self,[t0*u0,t1*u0,t0*u1,t1*u1])
+
+ def __call__(self,point):
+ if isinstance(point,TuplePoint):
+ theta_points=[]
+ theta_structures=self._theta_structures
+ for i in range(2):
+ theta_points.append(theta_structures[i](point[i]))
+ return self.product_theta_point(theta_points)
+ else:
+ return self._point(self,point)
+
+ def to_theta_points(self,P):
+ coords=P.coords()
+ theta_coords=[(coords[0],coords[1]),(coords[1],coords[3])]
+ theta_points=[self._theta_structures[i](theta_coords[i]) for i in range(2)]
+ return theta_points
+
+ def to_tuple_point(self,P):
+ theta_points=self.to_theta_points(P)
+ montgomery_points=[self._theta_structures[i].to_montgomery_point(theta_points[i]) for i in range(2)]
+ return TuplePoint(montgomery_points)
+
+
+# ======================================= #
+# Class for Theta Point (level-2) #
+# ======================================= #
+
+
+class ThetaPointDim2:
+ """
+ A Theta Point in the level-2 Theta Structure is defined with four projective
+ coordinates
+
+ We cannot perform arbitrary arithmetic, but we can compute doubles and
+ differential addition, which like x-only points on the Kummer line, allows
+ for scalar multiplication
+ """
+
+ def __init__(self, parent, coords):
+ if not isinstance(parent, ThetaStructureDim2) and not isinstance(parent, ProductThetaStructureDim2):
+ raise ValueError
+
+ self._parent = parent
+ self._coords = tuple(coords)
+
+ self._hadamard = None
+ self._squared_theta = None
+
+ def parent(self):
+ """
+ Return the parent of the element, of type ThetaStructureDim2
+ """
+ return self._parent
+
+ def theta(self):
+ """
+ Return the parent theta structure of this ThetaPointDim2"""
+ return self.parent()
+
+ def coords(self):
+ """
+ Return the projective coordinates of the ThetaPointDim2
+ """
+ return self._coords
+
+ def is_zero(self):
+ """
+ An element is zero if it is equivalent to the null point of the parent
+ ThetaStrcuture
+ """
+ return self == self.parent().zero()
+
+ @staticmethod
+ def to_hadamard(x_00, x_10, x_01, x_11):
+ """
+ Compute the Hadamard transformation of four coordinates, using recursive
+ formula.
+ """
+ x_00, x_10 = (x_00 + x_10, x_00 - x_10)
+ x_01, x_11 = (x_01 + x_11, x_01 - x_11)
+ return x_00 + x_01, x_10 + x_11, x_00 - x_01, x_10 - x_11
+
+ def hadamard(self):
+ """
+ Compute the Hadamard transformation of this element
+ """
+ if self._hadamard is None:
+ self._hadamard = self.to_hadamard(*self.coords())
+ return self._hadamard
+
+ @staticmethod
+ def to_squared_theta(x, y, z, t):
+ """
+ Square the coordinates and then compute the Hadamard transform of the
+ input
+ """
+ return ThetaPointDim2.to_hadamard(x * x, y * y, z * z, t * t)
+
+ def squared_theta(self):
+ """
+ Compute the Squared Theta transformation of this element
+ which is the square operator followed by Hadamard.
+ """
+ if self._squared_theta is None:
+ self._squared_theta = self.to_squared_theta(*self.coords())
+ return self._squared_theta
+
+ def double(self):
+ """
+ Computes [2]*self
+
+ NOTE: Assumes that no coordinate is zero
+
+ Cost: 8S 6M
+ """
+ # If a,b,c,d = 0, then the codomain of A->A/K_2 is a product of
+ # elliptic curves with a non product theta structure.
+ # Unless we are very unlucky, A/K_1 will not be in this case, so we
+ # just need to Hadamard, double, and Hadamard inverse
+ # If A,B,C,D=0 then the domain itself is a product of elliptic
+ # curves with a non product theta structure. The Hadamard transform
+ # will not change this, we need a symplectic change of variable
+ # that puts us back in a product theta structure
+ y0, z0, t0, Y0, Z0, T0 = self.parent()._arithmetic_precomputation()
+
+ # Temp coordinates
+ # Cost 8S 3M
+ xp, yp, zp, tp = self.squared_theta()
+ xp = xp**2
+ yp = Y0 * yp**2
+ zp = Z0 * zp**2
+ tp = T0 * tp**2
+
+ # Final coordinates
+ # Cost 3M
+ X, Y, Z, T = self.to_hadamard(xp, yp, zp, tp)
+ X = X
+ Y = y0 * Y
+ Z = z0 * Z
+ T = t0 * T
+
+ coords = (X, Y, Z, T)
+ return self._parent(coords)
+
+ def diff_addition(P, Q, PQ):
+ """
+ Given the theta points of P, Q and P-Q computes the theta point of
+ P + Q.
+
+ NOTE: Assumes that no coordinate is zero
+
+ Cost: 8S 17M
+ """
+ # Extract out the precomputations
+ Y0, Z0, T0 = P.parent()._arithmetic_precomputation()[-3:]
+
+ # Transform with the Hadamard matrix and multiply
+ # Cost: 8S 7M
+ p1, p2, p3, p4 = P.squared_theta()
+ q1, q2, q3, q4 = Q.squared_theta()
+
+ xp = p1 * q1
+ yp = Y0 * p2 * q2
+ zp = Z0 * p3 * q3
+ tp = T0 * p4 * q4
+
+ # Final coordinates
+ PQx, PQy, PQz, PQt = PQ.coords()
+
+ # Note:
+ # We replace the four divisions by
+ # PQx, PQy, PQz, PQt by 10 multiplications
+ # Cost: 10M
+ PQxy = PQx * PQy
+ PQzt = PQz * PQt
+
+ X, Y, Z, T = P.to_hadamard(xp, yp, zp, tp)
+ X = X * PQzt * PQy
+ Y = Y * PQzt * PQx
+ Z = Z * PQxy * PQt
+ T = T * PQxy * PQz
+
+ coords = (X, Y, Z, T)
+ return P.parent()(coords)
+
+ def scale(self, n):
+ """
+ Scale all coordinates of the ThetaPointDim2 by `n`
+ """
+ x, y, z, t = self.coords()
+ if not isinstance(n, RingElement):
+ raise ValueError(f"Cannot scale by element {n} of type {type(n)}")
+ scaled_coords = (n * x, n * y, n * z, n * t)
+ return self._parent(scaled_coords)
+
+ def double_iter(self, m):
+ """
+ Compute [2^n] Self
+
+ NOTE: Assumes that no coordinate is zero at any point during the doubling
+ """
+ if not isinstance(m, Integer):
+ try:
+ m = Integer(m)
+ except:
+ raise TypeError(f"Cannot coerce input scalar {m = } to an integer")
+
+ if m.is_zero():
+ return self.parent().zero()
+
+ P1 = self
+ for _ in range(m):
+ P1 = P1.double()
+ return P1
+
+ def __mul__(self, m):
+ """
+ Uses Montgomery ladder to compute [m] Self
+
+ NOTE: Assumes that no coordinate is zero at any point during the doubling
+ """
+ # Make sure we're multiplying by something value
+ if not isinstance(m, (int, Integer)):
+ try:
+ m = Integer(m)
+ except:
+ raise TypeError(f"Cannot coerce input scalar {m = } to an integer")
+
+ # If m is zero, return the null point
+ if not m:
+ return self.parent().zero()
+
+ # We are with ±1 identified, so we take the absolute value of m
+ m = abs(m)
+
+ P0, P1 = self, self
+ P2 = P1.double()
+ # If we are multiplying by two, the chain stops here
+ if m == 2:
+ return P2
+
+ # Montgomery double and add.
+ for bit in bin(m)[3:]:
+ Q = P2.diff_addition(P1, P0)
+ if bit == "1":
+ P2 = P2.double()
+ P1 = Q
+ else:
+ P1 = P1.double()
+ P2 = Q
+
+ return P1
+
+ def __rmul__(self, m):
+ return self * m
+
+ def __imul__(self, m):
+ self = self * m
+ return self
+
+ def __eq__(self, other):
+ """
+ Check the quality of two ThetaPoints. Note that as this is a
+ projective equality, we must be careful for when certain coefficients may
+ be zero.
+ """
+ if not isinstance(other, ThetaPointDim2):
+ return False
+
+ a1, b1, c1, d1 = self.coords()
+ a2, b2, c2, d2 = other.coords()
+
+ if d1 != 0 or d2 != 0:
+ return all([a1 * d2 == a2 * d1, b1 * d2 == b2 * d1, c1 * d2 == c2 * d1])
+ elif c1 != 0 or c2 != 0:
+ return all([a1 * c2 == a2 * c1, b1 * c2 == b2 * c1])
+ elif b1 != 0 or b2 != 0:
+ return a1 * b2 == a2 * b1
+ else:
+ return True
+
+ def __repr__(self):
+ return f"Theta point with coordinates: {self.coords()}"