1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
|
#!/usr/bin/env python3
import logging
from xonly import xPoint, isWeierstrass, translate_by_T
from basis_sampling import find_Ts
from elkies import Elkies
from sage.arith.misc import factor
from sage.rings.integer import Integer
from sage.arith.misc import kronecker_symbol
from sage.rings.finite_rings.finite_field_constructor import GF
logger = logging.getLogger(__name__)
logger.setLevel(logging.WARNING)
logger_sh = logging.StreamHandler()
logger_sh.setLevel(logging.WARNING)
formatter = logging.Formatter("%(name)s [%(levelname)s] %(message)s")
logger_sh.setFormatter(formatter)
logger.addHandler(logger_sh)
def ideal_above_2_action(E, P, Q, basis_order, ideal, w):
r"""Computes the action of a power of an ideal above 2 using Velu
Input:
- E: Elliptic curve over Fp
- P, Q: Basis of E[2^basis_order],
Here, P is in E(Fp) and Q is in Et(Fp) for a quadratic twist Et
- basis_order: Such that 2^basis_order is the order of P, Q
- ideal: Power of an ideal above 2
Output:
Tuple (phi, E_ideal)
- phi: The isogeny corresponding to ideal
- E_ideal: The curve obtained by the action of the ideal on E
"""
_, v2 = factor(ideal.norm())[0]
left = 0
right = 0
if (w - 1) / 2 in ideal:
K = P
left = v2
else:
assert (w + 1) / 2 in ideal
K = Q
right = v2
K = K.xMUL(2 ** (basis_order - v2))
assert K.xMUL(2 ** (v2 - 1))
assert not K.xMUL(2**v2)
phi_2 = K.xMUL(2 ** (v2 - 1)).xISOG(E, 2)
phi = phi_2
for step in range(1, v2):
E = phi.codomain()
K = K.push(phi_2)
assert K.xMUL(2 ** (v2 - step - 1))
assert not K.xMUL(2 ** (v2 - step))
phi_2 = K.xMUL(2 ** (v2 - step - 1)).xISOG(E, 2)
phi = phi_2 * phi
E_out = phi.codomain().montgomery_model()
return phi.codomain().isomorphism_to(E_out) * phi, E_out, left, right
def small_prime_ideal_action(E, ell, lam=None, prev_j=None):
r"""Computes action of a ideal with prime norm using Elkies
Input:
- E: Elliptic curve over Fp IN WEIERSTRASS FORM
- ell: A small prime, split in the quadratic order
- lam: (optional) Eigenvalue determining the ideal
- prev_j: (optional) The j-invariant of the WRONG ell-isogenous curve
Both lam and prev_j are passed to Elkies
Output:
- phi: Isogeny corresponding to an ideal above ell
"""
# Fix later, but Elkies uses short Weierstrass
# Change ring stuff is messy, but needed to actually compute the rational model
assert isWeierstrass(E)
h = Elkies(E, ell, E.base_field(), lam=lam, prev_j=prev_j)
phi = E.isogeny(h)
return phi
def smooth_ideal_action(E, norm, ideal, w, max_order):
r"""Computes action of a an ideal with odd smooth norm using successive Elkies
Input:
- E: Elliptic curve over Fp
- norm: Norm of ideal
- ideal: An ideal
Output: Tuple (isogenies, E_ideal)
- isogenies: A list of isogenies, forming a chain from E to E_out
- E_ideal: The curve obtained by the action of the ideal on E
"""
p = E.base_field().characteristic()
isogenies = []
E1 = E.short_weierstrass_model()
isogenies += [E.isomorphism_to(E1)]
if norm > 1:
for ell, e in factor(norm):
lam = Integer(GF(ell)(-p).sqrt())
if not (w - lam) in (ideal + ell * max_order):
# In this case, we want the other one
lam = ell - lam
assert (w - lam) in (ideal + ell * max_order)
prev_j = None
for _ in range(e):
logger.debug(f"Starting Elkies step of degree {ell}")
phi = small_prime_ideal_action(E1, ell, lam, prev_j)
prev_j = E1.j_invariant()
E1 = phi.codomain()
isogenies.append(phi)
E_ideal = isogenies[-1].codomain().montgomery_model()
isogenies += [isogenies[-1].codomain().isomorphism_to(E_ideal)]
return isogenies, E_ideal
def random_smooth_isogeny(E, g):
r"""
Returns a random isogeny of smooth degree g from E
Input:
- E: Elliptic curve over Fp
- g: Smooth number
Output:
- phi : An isogeny from E of degree g
- E_out : phi(E)
"""
p = E.base_field().characteristic()
# Random smooth odd norm isogeny
isogs = []
if g > 1:
E1 = E.short_weierstrass_model()
pre_isom = E.isomorphism_to(E1)
isogs.append(pre_isom)
logger.debug(f"Extra isogeny for g = {factor(g)}")
# Do elkies first, to stay over Fp
g_elkies = []
for ell, e in factor(g):
if kronecker_symbol(-p, ell) == 1:
g_elkies.append((ell, e))
for ell, e in g_elkies:
prev_j = None
for _ in range(e):
phi_ell = small_prime_ideal_action(E1, ell, prev_j=prev_j)
prev_j = E1.j_invariant()
E1 = phi_ell.codomain()
isogs.append(phi_ell)
E_out = isogs[-1].codomain().montgomery_model()
post_isom = isogs[-1].codomain().isomorphism_to(E_out)
isogs.append(post_isom)
return isogs, E_out
else:
return [], E
def eval_endomorphism(rho, P, twist, max):
r"""
Evaluates an element of End(E) on a point P.
P is assumed to be Fp rational on either E or on a twist
"""
a, b = list(rho) # write as a + b*pi
n = rho.denominator()
if twist:
# a + b*pi = a - b, since pi(P) = -P
m = Integer(a - b)
else:
# a + b*pi = a + b, since pi(P) = P
m = Integer(a + b)
if max and (n == 2): # See Appendix D.2
mP = P.xMUL(m)
E = P.curve
T0 = find_Ts(E, only_T0=True)
# Already know which point to choose, Remark D.2
assert (P.X - T0.x()).is_square() != twist
T = xPoint(T0.x(), E)
return translate_by_T(mP, T)
else:
return P.xMUL(m)
|