Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/coin.py
blob: b6aec221c9e4980402ec6acb3112afd4a161f659 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
from sage.all import (
    xgcd,
    ceil, floor,
    log,
)
from sage.all import gcd, is_pseudoprime, two_squares, Factorization, ZZ
from sage.all import isqrt
from sage.rings.finite_rings.integer_mod import Mod

small_squares = {
    5: (1, 2), 13: (2, 3), 17: (1, 4), 29: (2, 5), 37: (1, 6), 41: (4, 5),
    53: (2, 7), 61: (5, 6), 73: (3, 8), 89: (5, 8), 97: (4, 9),
    101: (1, 10), 109: (3, 10), 113: (7, 8), 137: (4, 11), 149: (7, 10),
    157: (6, 11), 173: (2, 13), 181: (9, 10), 193: (7, 12), 197: (1, 14),
    229: (2, 15), 233: (8, 13), 241: (4, 15), 257: (1, 16), 269: (10, 13),
    277: (9, 14), 281: (5, 16), 293: (2, 17), 313: (12, 13), 317: (11, 14),
    337: (9, 16), 349: (5, 18), 353: (8, 17), 373: (7, 18), 389: (10, 17),
    397: (6, 19), 401: (1, 20), 409: (3, 20), 421: (14, 15), 433: (12, 17),
    449: (7, 20), 457: (4, 21), 461: (10, 19), 509: (5, 22), 521: (11, 20),
    541: (10, 21), 557: (14, 19), 569: (13, 20), 577: (1, 24), 593: (8, 23),
    601: (5, 24), 613: (17, 18), 617: (16, 19), 641: (4, 25), 653: (13, 22),
    661: (6, 25), 673: (12, 23), 677: (1, 26), 701: (5, 26), 709: (15, 22),
    733: (2, 27), 757: (9, 26), 761: (19, 20), 769: (12, 25), 773: (17, 22),
    797: (11, 26), 809: (5, 28), 821: (14, 25), 829: (10, 27), 853: (18, 23),
    857: (4, 29), 877: (6, 29), 881: (16, 25), 929: (20, 23), 937: (19, 24),
    941: (10, 29), 953: (13, 28), 977: (4, 31), 997: (6, 31), 1009: (15, 28),
    1013: (22, 23), 1021: (11, 30), 1033: (3, 32), 1049: (5, 32), 1061: (10, 31),
    1069: (13, 30), 1093: (2, 33), 1097: (16, 29), 1109: (22, 25), 1117: (21, 26),
    1129: (20, 27), 1153: (8, 33), 1181: (5, 34), 1193: (13, 32), 1201: (24, 25),
    1213: (22, 27), 1217: (16, 31), 1229: (2, 35), 1237: (9, 34), 1249: (15, 32),
    1277: (11, 34), 1289: (8, 35), 1297: (1, 36), 1301: (25, 26), 1321: (5, 36),
    1361: (20, 31), 1373: (2, 37), 1381: (15, 34), 1409: (25, 28), 1429: (23, 30),
    1433: (8, 37), 1453: (3, 38), 1481: (16, 35), 1489: (20, 33), 1493: (7, 38),
    1549: (18, 35), 1553: (23, 32), 1597: (21, 34), 1601: (1, 40), 1609: (3, 40),
    1613: (13, 38), 1621: (10, 39), 1637: (26, 31), 1657: (19, 36), 1669: (15, 38),
    1693: (18, 37), 1697: (4, 41), 1709: (22, 35), 1721: (11, 40), 1733: (17, 38),
    1741: (29, 30), 1753: (27, 32), 1777: (16, 39), 1789: (5, 42), 1801: (24, 35),
    1861: (30, 31), 1873: (28, 33), 1877: (14, 41), 1889: (17, 40), 1901: (26, 35),
    1913: (8, 43), 1933: (13, 42), 1949: (10, 43), 1973: (23, 38), 1993: (12, 43),
    1997: (29, 34), 2017: (9, 44), 2029: (2, 45), 2053: (17, 42), 2069: (25, 38),
    2081: (20, 41), 2089: (8, 45), 2113: (32, 33), 2129: (23, 40), 2137: (29, 36),
    2141: (5, 46), 2153: (28, 37), 2161: (15, 44), 2213: (2, 47), 2221: (14, 45),
    2237: (11, 46), 2269: (30, 37), 2273: (8, 47), 2281: (16, 45), 2293: (23, 42),
    2297: (19, 44), 2309: (10, 47), 2333: (22, 43), 2341: (15, 46), 2357: (26, 41),
    2377: (21, 44), 2381: (34, 35), 2389: (25, 42), 2393: (32, 37), 2417: (4, 49),
    2437: (6, 49), 2441: (29, 40), 2473: (13, 48), 2477: (19, 46), 2521: (35, 36),
    2549: (7, 50), 2557: (21, 46), 2593: (17, 48), 2609: (20, 47), 2617: (4, 51),
    2621: (11, 50), 2633: (28, 43), 2657: (16, 49), 2677: (34, 39), 2689: (33, 40),
    2693: (22, 47), 2713: (3, 52), 2729: (5, 52), 2741: (25, 46), 2749: (30, 43),
    2753: (7, 52), 2777: (29, 44), 2789: (17, 50), 2797: (14, 51), 2801: (20, 49),
    2833: (23, 48), 2837: (34, 41), 2857: (16, 51), 2861: (19, 50), 2897: (31, 44),
    2909: (10, 53), 2917: (1, 54), 2953: (12, 53), 2957: (29, 46), 2969: (37, 40),
    3001: (20, 51), 3037: (11, 54), 3041: (4, 55), 3049: (32, 45), 3061: (6, 55),
    3089: (8, 55), 3109: (30, 47), 3121: (39, 40), 3137: (1, 56), 3169: (12, 55),
    3181: (34, 45), 3209: (20, 53), 3217: (9, 56), 3221: (14, 55), 3229: (27, 50),
    3253: (2, 57), 3257: (11, 56), 3301: (30, 49), 3313: (8, 57), 3329: (25, 52),
    3361: (15, 56), 3373: (3, 58), 3389: (5, 58), 3413: (7, 58), 3433: (27, 52),
    3449: (40, 43), 3457: (39, 44), 3461: (31, 50), 3469: (38, 45), 3517: (6, 59),
    3529: (35, 48), 3533: (13, 58), 3541: (25, 54), 3557: (34, 49), 3581: (10, 59),
    3593: (28, 53), 3613: (42, 43), 3617: (41, 44), 3637: (39, 46), 3673: (37, 48),
    3677: (14, 59), 3697: (36, 49), 3701: (26, 55), 3709: (30, 53), 3733: (22, 57),
    3761: (25, 56), 3769: (13, 60), 3793: (33, 52), 3797: (41, 46), 3821: (10, 61),
    3833: (32, 53), 3853: (3, 62), 3877: (31, 54), 3881: (20, 59), 3889: (17, 60),
    3917: (14, 61), 3929: (35, 52), 3989: (25, 58), 4001: (40, 49), 4013: (13, 62),
    4021: (39, 50), 4049: (32, 55), 4057: (24, 59), 4073: (37, 52), 4093: (27, 58),
    4129: (23, 60), 4133: (17, 62), 4153: (43, 48), 4157: (26, 59), 4177: (9, 64),
    4201: (40, 51), 4217: (11, 64), 4229: (2, 65), 4241: (4, 65), 4253: (38, 53),
    4261: (6, 65), 4273: (32, 57), 4289: (8, 65), 4297: (24, 61), 4337: (44, 49),
    4349: (43, 50), 4357: (1, 66), 4373: (23, 62), 4397: (26, 61), 4409: (40, 53),
    4421: (14, 65), 4441: (29, 60), 4457: (19, 64), 4481: (16, 65), 4493: (2, 67),
    4513: (47, 48), 4517: (46, 49), 4549: (18, 65), 4561: (31, 60), 4597: (41, 54),
    4621: (30, 61), 4637: (34, 59), 4649: (5, 68), 4657: (39, 56), 4673: (7, 68),
    4721: (25, 64), 4729: (45, 52), 4733: (37, 58), 4789: (42, 55), 4793: (13, 68),
    4801: (24, 65), 4813: (18, 67), 4817: (41, 56), 4861: (10, 69), 4877: (34, 61),
    4889: (20, 67), 4909: (3, 70), 4933: (33, 62), 4937: (29, 64), 4957: (14, 69),
    4969: (37, 60), 4973: (22, 67), 4993: (32, 63), 5009: (28, 65), 5021: (11, 70),
    5077: (6, 71), 5081: (40, 59), 5101: (50, 51), 5113: (48, 53), 5153: (23, 68),
    5189: (17, 70), 5197: (29, 66), 5209: (5, 72), 5233: (7, 72), 5237: (14, 71),
    5261: (19, 70), 5273: (28, 67), 5281: (41, 60), 5297: (16, 71), 5309: (50, 53),
    5333: (2, 73), 5381: (34, 65), 5393: (8, 73), 5413: (38, 63), 5417: (44, 59),
    5437: (26, 69), 5441: (20, 71), 5449: (43, 60), 5477: (1, 74), 5501: (5, 74),
    5521: (36, 65), 5557: (9, 74), 5569: (40, 63), 5573: (47, 58), 5581: (35, 66),
    5641: (4, 75), 5653: (18, 73), 5657: (44, 61), 5669: (38, 65), 5689: (8, 75),
    5693: (43, 62), 5701: (15, 74), 5717: (26, 71), 5737: (51, 56), 5741: (29, 70),
    5749: (50, 57), 5801: (5, 76), 5813: (22, 73), 5821: (14, 75), 5849: (35, 68),
    5857: (9, 76), 5861: (31, 70), 5869: (45, 62), 5881: (16, 75), 5897: (11, 76),
    5953: (52, 57), 5981: (50, 59), 6029: (10, 77), 6037: (41, 66), 6053: (47, 62),
    6073: (12, 77), 6089: (40, 67), 6101: (25, 74), 6113: (28, 73), 6121: (45, 64),
    6133: (7, 78), 6173: (53, 58), 6197: (34, 71), 6217: (21, 76), 6221: (50, 61),
    6229: (30, 73), 6257: (4, 79), 6269: (37, 70), 6277: (6, 79), 6301: (26, 75),
    6317: (29, 74), 6329: (20, 77), 6337: (36, 71), 6353: (32, 73), 6361: (40, 69),
    6373: (17, 78), 6389: (55, 58), 6397: (54, 59), 6421: (39, 70), 6449: (7, 80),
    6469: (50, 63), 6473: (43, 68), 6481: (9, 80), 6521: (11, 80), 6529: (48, 65),
    6553: (37, 72), 6569: (13, 80), 6577: (4, 81), 6581: (41, 70), 6637: (54, 61),
    6653: (53, 62), 6661: (10, 81), 6673: (52, 63), 6689: (17, 80), 6701: (35, 74),
    6709: (25, 78), 6733: (3, 82), 6737: (31, 76), 6761: (19, 80), 6781: (34, 75),
    6793: (48, 67), 6829: (30, 77), 6833: (47, 68), 6841: (21, 80), 6857: (56, 61),
    6869: (55, 62), 6917: (26, 79), 6949: (15, 82), 6961: (20, 81), 6977: (44, 71),
    6997: (39, 74), 7001: (35, 76), 7013: (17, 82), 7057: (1, 84), 7069: (38, 75),
    7109: (47, 70), 7121: (55, 64), 7129: (27, 80), 7177: (11, 84), 7193: (52, 67),
    7213: (18, 83), 7229: (2, 85), 7237: (26, 81), 7253: (23, 82), 7297: (39, 76),
    7309: (35, 78), 7321: (60, 61), 7333: (58, 63), 7349: (25, 82), 7369: (12, 85),
    7393: (47, 72), 7417: (19, 84), 7433: (53, 68), 7457: (41, 76), 7477: (9, 86),
    7481: (16, 85), 7489: (33, 80), 7517: (11, 86), 7529: (40, 77), 7537: (36, 79),
    7541: (50, 71), 7549: (18, 85), 7561: (44, 75), 7573: (2, 87), 7577: (59, 64),
    7589: (58, 65), 7621: (15, 86), 7649: (55, 68), 7669: (10, 87), 7673: (28, 83),
    7681: (25, 84), 7717: (34, 81), 7741: (46, 75), 7753: (3, 88), 7757: (19, 86),
    7789: (30, 83), 7793: (7, 88), 7817: (61, 64), 7829: (50, 73), 7841: (40, 79),
    7853: (58, 67), 7873: (57, 68), 7877: (49, 74), 7901: (26, 85), 7933: (43, 78),
    7937: (4, 89), 7949: (35, 82), 7993: (53, 72), 8009: (28, 85), 8017: (31, 84),
    8053: (22, 87), 8069: (62, 65), 8081: (41, 80), 8089: (60, 67), 8093: (37, 82),
    8101: (1, 90), 8117: (14, 89), 8161: (40, 81), 8209: (55, 72), 8221: (11, 90),
    8233: (48, 77), 8237: (29, 86), 8269: (13, 90), 8273: (23, 88), 8293: (47, 78),
    8297: (4, 91), 8317: (6, 91), 8329: (52, 75), 8353: (28, 87), 8369: (25, 88),
    8377: (51, 76), 8389: (17, 90), 8429: (50, 77), 8461: (19, 90), 8501: (55, 74),
    8513: (7, 92), 8521: (36, 85), 8537: (16, 91), 8573: (43, 82), 8581: (65, 66),
    8597: (26, 89), 8609: (47, 80), 8629: (23, 90), 8641: (60, 71), 8669: (38, 85),
    8677: (46, 81), 8681: (20, 91), 8689: (15, 92), 8693: (58, 73), 8713: (8, 93),
    8737: (41, 84), 8741: (50, 79), 8753: (17, 92), 8761: (56, 75), 8821: (30, 89),
    8837: (1, 94), 8849: (65, 68), 8861: (5, 94), 8893: (53, 78), 8929: (60, 73),
    8933: (47, 82), 8941: (29, 90), 8969: (35, 88), 9001: (51, 80), 9013: (38, 87),
    9029: (2, 95), 9041: (4, 95), 9049: (20, 93), 9109: (55, 78), 9133: (22, 93),
    9137: (64, 71), 9157: (54, 79), 9161: (44, 85), 9173: (62, 73), 9181: (30, 91),
    9209: (53, 80), 9221: (14, 95), 9241: (5, 96), 9257: (59, 76), 9277: (21, 94),
    9281: (16, 95), 9293: (58, 77), 9337: (11, 96), 9341: (46, 85), 9349: (18, 95),
    9377: (56, 79), 9397: (66, 71), 9413: (2, 97), 9421: (45, 86), 9433: (28, 93),
    9437: (34, 91), 9461: (25, 94), 9473: (8, 97), 9497: (61, 76), 9521: (40, 89),
    9533: (53, 82), 9601: (24, 95), 9613: (3, 98), 9629: (5, 98), 9649: (57, 80),
    9661: (69, 70), 9677: (29, 94), 9689: (35, 92), 9697: (56, 81), 9721: (64, 75),
    9733: (18, 97), 9749: (55, 82), 9769: (45, 88), 9781: (41, 90), 9817: (4, 99),
    9829: (15, 98), 9833: (37, 92), 9857: (44, 89), 9901: (10, 99), 9929: (52, 85),
    9941: (70, 71), 9949: (43, 90), 9973: (57, 82)}

# Primes 1 mod 4 / 3 mod 4
from const_precomp import (
        good_prime_prod_10k, bad_prime_prod_10k,
        good_prime_prod_100k, bad_prime_prod_100k,
        good_prime_prod_500k, bad_prime_prod_500k
)
good_prime_prod = good_prime_prod_10k
bad_prime_prod = bad_prime_prod_10k

def coin_pair_generator(n1, n2, e, exp_bound=None):
    """
    Find all pairs (u, v) s.t. u*n1 + v*n2 = 2^t for t <= e.
    If exp_bound is set, stop returning solution for t > t0 + exp_bound, where
    t0 is the minimum t for which a solution is found.
    """
    one, a, b = xgcd(n1, n2)
    # Assuming (a, b) = 1 - if gcd is 2^i we can divide before
    if one != 1:
        raise ValueError(f"{n1 = } and {n2 = } are not coprime")
    a, b, n1, n2 = map(int, [a, b, n1, n2])

    t0 = None
    for t in range(floor(log(min(n1, n2), 2)), e+1):
        if exp_bound and t0 and t > t0 + exp_bound:
            break
        l = 2**t
        if l < max(n1, n2):
            continue
        if a < 0:
            k = ((-l*a - 1) // n2) + 1 # = ceil(-l*a / n2)
            k_max = l*b // n1 # = floor(l*b / n1)
            while k <= k_max:
                u = l*a + k*n2
                v = l*b - k*n1

                k += 1
                if u % 2 == v % 2 == 0:
                    continue # Skip if both even (already included)
                if not t0:
                    t0 = t
                yield (ZZ(u), ZZ(v), ZZ(t))

        elif b < 0:
            k = ((-l*b - 1) // n1) + 1  # = ceil(-l*b / n1)
            k_max = l*a // n2 # = floor(l*a / n2)
            while k <= k_max:
                u = l*a - k*n2
                v = l*b + k*n1

                k += 1
                if u % 2 == v % 2 == 0:
                    continue
                if not t0:
                    t0 = t
                yield (ZZ(u), ZZ(v), ZZ(t))


def two_squares_factored(factors):
    """
    This is the function `two_squares` from sage, except we give it the
    factorisation of n already.
    """
    F = factors
    for (p,e) in F:
        if e % 2 == 1 and p % 4 == 3:
            raise ValueError("%s is not a sum of 2 squares"%n)

    n = factors.expand()
    if n == 0:
        return (0, 0)
    a = ZZ.one()
    b = ZZ.zero()
    for (p,e) in F:
        if p == 1:
            continue
        if e >= 2:
            m = p ** (e//2)
            a *= m
            b *= m
        if e % 2 == 1:
            if p == 2:
                # (a + bi) *= (1 + I)
                a,b = a - b, a + b
            else:  # p = 1 mod 4
                if p in small_squares:
                    r,s = small_squares[p]
                else:
                    # Find a square root of -1 mod p.
                    # If y is a non-square, then y^((p-1)/4) is a square root of -1.
                    y = Mod(2,p)
                    while True:
                        s = y**((p-1)/4)
                        if not s*s + 1:
                            s = s.lift()
                            break
                        y += 1
                    # Apply Cornacchia's algorithm to write p as r^2 + s^2.
                    r = p
                    while s*s > p:
                        r,s = s, r % s
                    r %= s

                # Multiply (a + bI) by (r + sI)
                a,b = a*r - b*s, b*r + a*s

    a = a.abs()
    b = b.abs()
    assert a*a + b*b == n
    if a <= b:
        return (a,b)
    else:
        return (b,a)

def rep_gcd(a, b):
    """
    Given a and b returns (a1, g) where a1*g = a and g contains
    the factors in common between a and b
    """
    out = 1
    g = gcd(a, b)
    while g != 1:
        out *= g
        a /= g
        g = gcd(a, g)

    return a, out

def sum_of_squares_friendly(n):
    """
    We can write any n = x^2 + y^2 providing that there
    are no prime power factors p^k | n such that
    p = 3 mod 4 and k odd.
    """
    # We consider the odd part of n and try and determine if there are bad factors
    n_val = n.valuation(2)
    n_odd = n // (2**n_val)
    fact = [(2, n_val)]

    if n_odd % 4 == 3:
        return False, fact

    n_odd, bad_cof = rep_gcd(n_odd, bad_prime_prod)

    sbf = isqrt(bad_cof)
    if sbf**2 == bad_cof:
        fact.append((sbf, 2))
    else:
        return False, fact

    # Good primes 1 mod 4
    n_odd, good_cof = rep_gcd(n_odd, good_prime_prod)
    good_cof = ZZ(good_cof)

    if n_odd == 1:
        return True, Factorization([*fact, *good_cof.factor()])

    else:
        return is_pseudoprime(n_odd), Factorization([*fact, *good_cof.factor(), (n_odd, 1)])

def sum_of_squares_friendly_pair(n1, n2):
    """
    sum_of_squares_friendly applied directly to a pair
    to minimize primality testing with early rejection
    """
    # We consider the odd part of n and try and determine if there are bad factors
    n1_val = n1.valuation(2)
    n1_odd = n1 // (2**n1_val)
    fact1 = [(2, n1_val)]
    n2_val = n2.valuation(2)
    n2_odd = n2 // (2**n2_val)
    fact2 = [(2, n2_val)]

    if n1_odd % 4 == 3 or n2_odd % 4 == 3:
        return False, fact, False, fact

    n1_odd, bad_cof1 = rep_gcd(n1_odd, bad_prime_prod)
    sbf1 = isqrt(bad_cof1)
    if sbf1**2 == bad_cof1:
        fact1.append((sbf1, 2))
    else:
        return False, fact1, False, fact2

    n2_odd, bad_cof2 = rep_gcd(n2_odd, bad_prime_prod)
    sbf2 = isqrt(bad_cof2)
    if sbf2**2 == bad_cof2:
        fact2.append((sbf2, 2))
    else:
        return False, fact1, False, fact2

    # Good primes 1 mod 4
    n1_odd, good_cof1 = rep_gcd(n1_odd, good_prime_prod)
    good_cof1 = ZZ(good_cof1)
    if n1_odd != 1 and not is_pseudoprime(n1_odd):
        return False, fact1, False, fact2

    n2_odd, good_cof2 = rep_gcd(n2_odd, good_prime_prod)
    good_cof2 = ZZ(good_cof2)
    if n2_odd != 1 and not is_pseudoprime(n2_odd):
        return False, fact1, False, fact2

    return True, Factorization([*fact1, *good_cof1.factor(), (n1_odd, 1)]), True, Factorization([*fact2, *good_cof2.factor(), (n2_odd, 1)])


def sum_of_squares(n):
    """
    Attempts to compute x,y such that n = x^2 + y^2
    """
    n = ZZ(n)

    b, fact = sum_of_squares_friendly(n)
    if not b:
        return []
    return two_squares_factored(fact)


def sum_of_squares_pair(n1, n2):
    """
    Sum of squares for both n1 and n2
    """
    n1 = ZZ(n1)
    n2 = ZZ(n2)

    b1, fact1, b2, fact2 = sum_of_squares_friendly_pair(n1, n2)
    if not (b1 and b2):
        return [], []

    return two_squares_factored(fact1), two_squares_factored(fact2)


def sos_pair_generator(n1, n2, e, n_squares=1, exp_bound=None):
    """
    Compute pairs (u, v) such that u*n1 + v*n2 = 2^t, with t <= e
    and u or v (or both) sum of squares.
    Input:
        - n1 and n2: starting values
        - e: target exponent of 2
        - n_squares: how many of u and v must be sum of squares
            (1 or 2, default 1)
        - exp_bound: (optional) exp_bound argument to pass to
            coin_pair_generator
    Output: a triple (u, v, t) where
        - t is such that u*n1 + v*n2 = 2^t, t <= e
        - the non s.o.s. among u and v (if any) is an integer
        - the s.o.s. are returned as a pair (x, y) such that
            x^2 + y^2 = u
    """

    for u, v, t in coin_pair_generator(n1, n2, e, exp_bound):
        if n_squares == 1:
            dec = sum_of_squares(u)
            if dec != []:
                yield [dec, v, t]
            dec = sum_of_squares(v)
            if dec != []:
                yield [u, dec, t]

        elif n_squares == 2:
            dec_u = sum_of_squares(u)
            if dec_u == []:
                continue
            dec_v = sum_of_squares(v)
            if dec_v != []:
                yield [dec_u, dec_v, t]

        else:
            raise ValueError("n_squares must be 1 or 2")

    return false


def remove_primes(u, primes):
    """
    Remove odd exponents of primes from u.
    Returns (x, g) such that x*g = u, and g contains
    the odd exponents of `primes` in u.
    """
    g = 1
    for pi in primes:
        val_i = u.valuation(pi) % 2
        g *= pi**val_i
        u /= pi**val_i

    return u, g

def xsos_pair_generator(n1, n2, e, allowed_primes, n_squares=1, exp_bound=None):
    """
    Compute pairs (u, v) such that u*n1 + v*n2 = 2^t, with t <= e and u or v
    (or both) sum of squares.
    Input:
        - n1 and n2: starting values
        - e: target exponent of 2
        - n_squares: how many of u and v must be sum of squares (1 or 2,
          default 1)
        - allowed primes: a list of primes that can be removed from u and v
          when checking for sum of squares, e.g.  u = u'*3 with u' sum of
          squares and 3 allowed prime
        - exp_bound: (optional) argument to pass to coin_pair_generator
    Output: a triple (u, v, t) where
        - t is such that u*n1 + v*n2 = 2^t, t <= e
        - the non s.o.s. among u and v (if any) is an integer
        - the s.o.s. are returned as a triple (x, y, g) such that g*(x^2 + y^2)
          = u
    """
    for u, v, t in coin_pair_generator(n1, n2, e, exp_bound):
        if n_squares == 1:
            uu, gu = remove_primes(u, allowed_primes)
            dec = sum_of_squares(uu)
            if dec != []:
                x, y = dec
                yield [(x, y, gu), v, t]

            vv, gv = remove_primes(v, allowed_primes)
            dec = sum_of_squares(vv)
            if dec != []:
                x, y = dec
                yield [u, (x, y, gv), t]

        elif n_squares == 2:
            uu, gu = remove_primes(u, allowed_primes)
            vv, gv = remove_primes(v, allowed_primes)

            if (uu % 4 == 3) or (vv % 4 == 3):
                continue

            dec_u, dec_v = sum_of_squares_pair(uu, vv)
            if dec_u == [] or dec_v == []:
                continue

            xu, yu = dec_u
            xv, yv = dec_v
            yield [(xu, yu, gu), (xv, yv, gv), t]

        else:
            raise ValueError("n_squares must be 1 or 2")

    return False


if __name__ == '__main__':
    from sage.all import set_random_seed, randint
    _r = randint(1, 1000)
    set_random_seed(_r)
    print(f'random seed: {_r}')

    # benchmarking for p = 2**lambda
    lb = 1500
    k = lb//2
    d1 = randint(2**k-2**(k//2), 2**k+2**(k//2))
    d2 = d1
    while gcd(d1, d2) != 1:
        d2 = randint(2**k-2**(k-1), 2**k+2**(k-1))
    print(f'{d1*d2}\n{2**lb}')

    import time
    tic = time.time()
    res = sos_pair_generator(d1, d2, lb, n_squares=1)
    print(f'time 1: {time.time() - tic:.3f}')
    print(f'{res = }')

    if res:
        u, v, t = res
        if not u in zz:
            u = u[0]**2 + u[1]**2
        if not v in zz:
            v = v[0]**2 + v[1]**2
        assert u*d1 + v*d2 == 2**t and t <= lb