Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/isogenies_dim2
diff options
context:
space:
mode:
Diffstat (limited to 'theta_lib/isogenies_dim2')
-rw-r--r--theta_lib/isogenies_dim2/gluing_isogeny_dim2.py292
-rw-r--r--theta_lib/isogenies_dim2/isogeny_chain_dim2.py178
-rw-r--r--theta_lib/isogenies_dim2/isogeny_dim2.py229
3 files changed, 699 insertions, 0 deletions
diff --git a/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py b/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py
new file mode 100644
index 0000000..2dac387
--- /dev/null
+++ b/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py
@@ -0,0 +1,292 @@
+"""
+This code is based on a copy of:
+https://github.com/ThetaIsogenies/two-isogenies
+
+MIT License
+
+Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+"""
+
+from sage.all import *
+from ..theta_structures.Tuple_point import TuplePoint
+from ..theta_structures.Theta_dim2 import ThetaStructureDim2, ThetaPointDim2
+from ..theta_structures.theta_helpers_dim2 import batch_inversion
+from ..basis_change.base_change_dim2 import montgomery_to_theta_matrix_dim2, apply_base_change_theta_dim2
+from ..theta_structures.montgomery_theta import lift_kummer_montgomery_point
+
+class GluingThetaIsogenyDim2:
+ """
+ Compute the gluing isogeny from E1 x E2 (Elliptic Product) -> A (Theta Model)
+
+ Expected input:
+
+ - (K1_8, K2_8) The 8-torsion above the kernel generating the isogeny
+ - M (Optional) a base change matrix, if this is not including, it can
+ be derived from [2](K1_8, K2_8)
+ """
+
+ def __init__(self, K1_8, K2_8, Theta12, N):
+ # Double points to get four-torsion, we always need one of these, used
+ # for the image computations but we'll need both if we wish to derived
+ # the base change matrix as well
+ K1_4 = 2*K1_8
+
+ # Initalise self
+ # This is the base change matrix for product Theta coordinates (not used, except in the dual)
+ self._base_change_matrix_theta = N
+ # Here, base change matrix directly applied to the Montgomery coordinates. null_point_bc is the
+ # theta null point obtained after applying the base change to the product Theta-structure.
+ self._base_change_matrix, null_point_bc = montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N, return_null_point = True)
+ self._domain_bc = ThetaStructureDim2(null_point_bc)
+ self.T_shift = K1_4
+ self._precomputation = None
+ self._zero_idx = 0
+ self._domain_product = Theta12
+ self._domain=(K1_8[0].curve(), K1_8[1].curve())
+
+ # Map points from elliptic product onto the product theta structure
+ # using the base change matrix
+ T1_8 = self.base_change(K1_8)
+ T2_8 = self.base_change(K2_8)
+
+ # Compute the codomain of the gluing isogeny
+ self._codomain = self._special_compute_codomain(T1_8, T2_8)
+
+ def apply_base_change(self, coords):
+ """
+ Apply the basis change by acting with matrix multiplication, treating
+ the coordinates as a vector
+ """
+ N = self._base_change_matrix
+ x, y, z, t = coords
+ X = N[0, 0] * x + N[0, 1] * y + N[0, 2] * z + N[0, 3] * t
+ Y = N[1, 0] * x + N[1, 1] * y + N[1, 2] * z + N[1, 3] * t
+ Z = N[2, 0] * x + N[2, 1] * y + N[2, 2] * z + N[2, 3] * t
+ T = N[3, 0] * x + N[3, 1] * y + N[3, 2] * z + N[3, 3] * t
+
+ return (X, Y, Z, T)
+
+ def base_change(self, P):
+ """
+ Compute the basis change on a TuplePoint to recover a ThetaPointDim2 of
+ compatible form
+ """
+ if not isinstance(P, TuplePoint):
+ raise TypeError("Function assumes that the input is of type `TuplePoint`")
+
+ # extract X,Z coordinates on pairs of points
+ P1, P2 = P.points()
+ X1, Z1 = P1[0], P1[2]
+ X2, Z2 = P2[0], P2[2]
+
+ # Correct in the case of (0 : 0)
+ if X1 == 0 and Z1 == 0:
+ X1 = 1
+ Z1 = 0
+ if X2 == 0 and Z2 == 0:
+ X2 = 1
+ Z2 = 0
+
+ # Apply the basis transformation on the product
+ coords = self.apply_base_change([X1 * X2, X1 * Z2, Z1 * X2, Z1 * Z2])
+ return coords
+
+ def _special_compute_codomain(self, T1, T2):
+ """
+ Given twzero_matro isotropic points of 8-torsion T1 and T2, compatible with
+ the theta null point, compute the level two theta null point A/K_2
+ """
+ xAxByCyD = ThetaPointDim2.to_squared_theta(*T1)
+ zAtBzYtD = ThetaPointDim2.to_squared_theta(*T2)
+
+ # Find the value of the non-zero index
+ zero_idx = next((i for i, x in enumerate(xAxByCyD) if x == 0), None)
+ self._zero_idx = zero_idx
+
+ # Dumb check to make sure everything is OK
+ assert xAxByCyD[self._zero_idx] == zAtBzYtD[self._zero_idx] == 0
+
+ # Initialize lists
+ # The zero index described the permutation
+ ABCD = [0 for _ in range(4)]
+ precomp = [0 for _ in range(4)]
+
+ # Compute non-trivial numerators (Others are either 1 or 0)
+ num_1 = zAtBzYtD[1 ^ self._zero_idx]
+ num_2 = xAxByCyD[2 ^ self._zero_idx]
+ num_3 = zAtBzYtD[3 ^ self._zero_idx]
+ num_4 = xAxByCyD[3 ^ self._zero_idx]
+
+ # Compute and invert non-trivial denominators
+ den_1, den_2, den_3, den_4 = batch_inversion([num_1, num_2, num_3, num_4])
+
+ # Compute A, B, C, D
+ ABCD[0 ^ self._zero_idx] = 0
+ ABCD[1 ^ self._zero_idx] = num_1 * den_3
+ ABCD[2 ^ self._zero_idx] = num_2 * den_4
+ ABCD[3 ^ self._zero_idx] = 1
+
+ # Compute precomputation for isogeny images
+ precomp[0 ^ self._zero_idx] = 0
+ precomp[1 ^ self._zero_idx] = den_1 * num_3
+ precomp[2 ^ self._zero_idx] = den_2 * num_4
+ precomp[3 ^ self._zero_idx] = 1
+ self._precomputation = precomp
+
+ # Final Hadamard of the above coordinates
+ a, b, c, d = ThetaPointDim2.to_hadamard(*ABCD)
+
+ return ThetaStructureDim2([a, b, c, d])
+
+ def special_image(self, P, translate):
+ """
+ When the domain is a non product theta structure on a product of
+ elliptic curves, we will have one of A,B,C,D=0, so the image is more
+ difficult. We need to give the coordinates of P but also of
+ P+Ti, Ti one of the point of 4-torsion used in the isogeny
+ normalisation
+ """
+ AxByCzDt = ThetaPointDim2.to_squared_theta(*P)
+
+ # We are in the case where at most one of A, B, C, D is
+ # zero, so we need to account for this
+ #
+ # To recover values, we use the translated point to get
+ AyBxCtDz = ThetaPointDim2.to_squared_theta(*translate)
+
+ # Directly compute y,z,t
+ y = AxByCzDt[1 ^ self._zero_idx] * self._precomputation[1 ^ self._zero_idx]
+ z = AxByCzDt[2 ^ self._zero_idx] * self._precomputation[2 ^ self._zero_idx]
+ t = AxByCzDt[3 ^ self._zero_idx]
+
+ # We can compute x from the translation
+ # First we need a normalisation
+ if z != 0:
+ zb = AyBxCtDz[3 ^ self._zero_idx]
+ lam = z / zb
+ else:
+ tb = AyBxCtDz[2 ^ self._zero_idx] * self._precomputation[2 ^ self._zero_idx]
+ lam = t / tb
+
+ # Finally we recover x
+ xb = AyBxCtDz[1 ^ self._zero_idx] * self._precomputation[1 ^ self._zero_idx]
+ x = xb * lam
+
+ xyzt = [0 for _ in range(4)]
+ xyzt[0 ^ self._zero_idx] = x
+ xyzt[1 ^ self._zero_idx] = y
+ xyzt[2 ^ self._zero_idx] = z
+ xyzt[3 ^ self._zero_idx] = t
+
+ image = ThetaPointDim2.to_hadamard(*xyzt)
+ return self._codomain(image)
+
+ def __call__(self, P):
+ """
+ Take into input the theta null point of A/K_2, and return the image
+ of the point by the isogeny
+ """
+ if not isinstance(P, TuplePoint):
+ raise TypeError(
+ "Isogeny image for the gluing isogeny is defined to act on TuplePoints"
+ )
+
+ # Compute sum of points on elliptic curve
+ P_sum_T = P + self.T_shift
+
+ # Push both the point and the translation through the
+ # completion
+ iso_P = self.base_change(P)
+ iso_P_sum_T = self.base_change(P_sum_T)
+
+ return self.special_image(iso_P, iso_P_sum_T)
+
+ def dual(self):
+ domain = self._codomain.hadamard()
+ codomain_bc = self._domain_bc.hadamard()
+ codomain = self._domain
+
+ precomputation = batch_inversion(codomain_bc.null_point_dual())
+
+ N_split = self._base_change_matrix.inverse()
+
+ return DualGluingThetaIsogenyDim2(domain, codomain_bc, codomain, N_split, precomputation)
+
+
+class DualGluingThetaIsogenyDim2:
+ def __init__(self, domain, codomain_bc, codomain, N_split, precomputation):
+ self._domain = domain
+ self._codomain_bc = codomain_bc # Theta structure
+ self._codomain = codomain # Elliptic curves E1 and E2
+ self._precomputation = precomputation
+ self._splitting_matrix = N_split
+
+ def __call__(self,P):
+ # Returns a TuplePoint.
+ if not isinstance(P, ThetaPointDim2):
+ raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input")
+
+ xx, yy, zz, tt = P.squared_theta()
+
+ Ai, Bi, Ci, Di = self._precomputation
+
+ xx = xx * Ai
+ yy = yy * Bi
+ zz = zz * Ci
+ tt = tt * Di
+
+ image_coords = (xx, yy, zz, tt)
+
+ X1X2, X1Z2, Z1X2, Z1Z2 = apply_base_change_theta_dim2(self._splitting_matrix, image_coords)
+
+ E1, E2 = self._codomain
+
+ if Z1Z2!=0:
+ #Z1=1, Z2=Z1Z2
+
+ Z2_inv=1/Z1Z2
+ X2=Z1X2*Z2_inv# Normalize (X2:Z2)=(X2/Z2:1)
+
+ X1=X1Z2*Z2_inv
+
+ assert X1*Z1X2==X1X2
+ P1 = lift_kummer_montgomery_point(E1, X1)
+ P2 = lift_kummer_montgomery_point(E2, X2)
+ return TuplePoint(P1,P2)
+ elif Z1X2==0 and X1Z2!=0:
+ # Case (X1:Z1)=0, X1!=0 and (X2:Z2)!=0
+
+ X2=X1X2/X1Z2
+ P2 = lift_kummer_montgomery_point(E2, X2)
+ return TuplePoint(E1(0),P2)
+ elif Z1X2!=0 and X1Z2==0:
+ # Case (X1:Z1)!=0 and (X2:Z2)=0, X2!=0
+
+ X1=X1X2/Z1X2
+ P1 = lift_kummer_montgomery_point(E1, X1)
+ return TuplePoint(P1,E2(0))
+ else:
+ return TuplePoint(E1(0),E2(0))
+
+
+
+
+
diff --git a/theta_lib/isogenies_dim2/isogeny_chain_dim2.py b/theta_lib/isogenies_dim2/isogeny_chain_dim2.py
new file mode 100644
index 0000000..23adb23
--- /dev/null
+++ b/theta_lib/isogenies_dim2/isogeny_chain_dim2.py
@@ -0,0 +1,178 @@
+"""
+This code is based on a copy of:
+https://github.com/ThetaIsogenies/two-isogenies
+
+MIT License
+
+Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+"""
+
+from sage.all import *
+from ..theta_structures.Tuple_point import TuplePoint
+from ..theta_structures.Theta_dim2 import ThetaPointDim2
+from .gluing_isogeny_dim2 import GluingThetaIsogenyDim2
+from .isogeny_dim2 import ThetaIsogenyDim2
+from ..utilities.strategy import optimised_strategy
+
+
+class IsogenyChainDim2:
+ r"""
+ Given (P1, P2), (Q1, Q2) in (E1 x E2)[2^(n+2)] as the generators of a kernel
+ of a (2^n, 2^n)-isogeny
+
+ ker(Phi) = <(P1, P2), (Q1, Q2)>
+
+ Input:
+
+ - kernel = TuplePoint(P1, P2), TuplePoint(Q1, Q2):
+ where points are on the elliptic curves E1, E2 of order 2^(n+2)
+ - n: the length of the chain
+ - strategy: the optimises strategy to compute a walk through the graph of
+ images and doublings with a quasli-linear number of steps
+ """
+
+ def __init__(self, kernel, Theta12, M, n, strategy=None):
+ self.n = n
+ self.E1, self.E2 = kernel[0].parent_curves()
+ assert kernel[1].parent_curves() == [self.E1, self.E2]
+
+ self._domain = (self.E1, self.E2)
+
+ if strategy is None:
+ strategy = self.get_strategy()
+ self.strategy = strategy
+
+ self._phis = self.isogeny_chain(kernel, Theta12, M)
+
+ self._codomain=self._phis[-1]._codomain
+
+ def get_strategy(self):
+ return optimised_strategy(self.n)
+
+ def isogeny_chain(self, kernel, Theta12, M):
+ """
+ Compute the isogeny chain and store intermediate isogenies for evaluation
+ """
+ # Extract the CouplePoints from the Kernel
+ Tp1, Tp2 = kernel
+
+ # Store chain of (2,2)-isogenies
+ isogeny_chain = []
+
+ # Bookkeeping for optimal strategy
+ strat_idx = 0
+ level = [0]
+ ker = (Tp1, Tp2)
+ kernel_elements = [ker]
+
+ for k in range(self.n):
+ prev = sum(level)
+ ker = kernel_elements[-1]
+
+ while prev != (self.n - 1 - k):
+ level.append(self.strategy[strat_idx])
+
+ # Perform the doublings
+ Tp1 = ker[0].double_iter(self.strategy[strat_idx])
+ Tp2 = ker[1].double_iter(self.strategy[strat_idx])
+
+ ker = (Tp1, Tp2)
+
+ # Update kernel elements and bookkeeping variables
+ kernel_elements.append(ker)
+ prev += self.strategy[strat_idx]
+ strat_idx += 1
+
+ # Compute the codomain from the 8-torsion
+ Tp1, Tp2 = ker
+ if k == 0:
+ phi = GluingThetaIsogenyDim2(Tp1, Tp2, Theta12, M)
+ else:
+ phi = ThetaIsogenyDim2(Th, Tp1, Tp2)
+
+ # Update the chain of isogenies
+ Th = phi._codomain
+ isogeny_chain.append(phi)
+
+ # Remove elements from list
+ kernel_elements.pop()
+ level.pop()
+
+ # Push through points for the next step
+ kernel_elements = [(phi(T1), phi(T2)) for T1, T2 in kernel_elements]
+
+ return isogeny_chain
+
+ def evaluate_isogeny(self, P):
+ """
+ Given a point P, of type TuplePoint on the domain E1 x E2, computes the
+ ThetaPointDim2 on the codomain ThetaStructureDim2.
+ """
+ if not isinstance(P, TuplePoint):
+ raise TypeError(
+ "IsogenyChainDim2 isogeny expects as input a TuplePoint on the domain product E1 x E2"
+ )
+ n=len(self._phis)
+ for i in range(n):
+ P = self._phis[i](P)
+ return P
+
+ def __call__(self, P):
+ """
+ Evaluate a TuplePoint under the action of this isogeny.
+ """
+ return self.evaluate_isogeny(P)
+
+ def dual(self):
+ domain = self._codomain
+ codomain = self._domain
+ n=len(self._phis)
+ isogenies=[]
+ for i in range(n):
+ isogenies.append(self._phis[n-1-i].dual())
+ return DualIsogenyChainDim2(domain, codomain, isogenies)
+
+
+class DualIsogenyChainDim2:
+ def __init__(self, domain, codomain, isogenies):
+ self._domain = domain
+ self._codomain = codomain
+ self._phis = isogenies
+
+ def evaluate_isogeny(self, P):
+ """
+ Given a ThetaPointDim2 point P on the codomain ThetaStructureDim2,
+ computes the image TuplePoint on the codomain E1 x E2.
+ """
+ if not isinstance(P, ThetaPointDim2):
+ raise TypeError(
+ "DualIsogenyChainDim2 isogeny expects as input a ThetaPointDim2."
+ )
+ n=len(self._phis)
+ for i in range(n):
+ P = self._phis[i](P)
+ return P
+
+ def __call__(self, P):
+ """
+ Evaluate a ThetaPointDim2 under the action of this isogeny.
+ """
+ return self.evaluate_isogeny(P)
diff --git a/theta_lib/isogenies_dim2/isogeny_dim2.py b/theta_lib/isogenies_dim2/isogeny_dim2.py
new file mode 100644
index 0000000..b740ab1
--- /dev/null
+++ b/theta_lib/isogenies_dim2/isogeny_dim2.py
@@ -0,0 +1,229 @@
+"""
+This code is based on a copy of:
+https://github.com/ThetaIsogenies/two-isogenies
+
+MIT License
+
+Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+"""
+
+from sage.all import ZZ
+from ..theta_structures.Theta_dim2 import ThetaStructureDim2, ThetaPointDim2
+from ..theta_structures.theta_helpers_dim2 import batch_inversion
+
+
+class ThetaIsogenyDim2:
+ def __init__(self, domain, T1_8, T2_8, hadamard=(False, True)):
+ """
+ Compute a (2,2)-isogeny in the theta model. Expects as input:
+
+ - domain: the ThetaStructureDim2 from which we compute the isogeny
+ - (T1_8, T2_8): points of 8-torsion above the kernel generating the isogeny
+
+ When the 8-torsion is not available (for example at the end of a long
+ (2,2)-isogeny chain), the the helper functions in isogeny_sqrt.py
+ must be used.
+
+ NOTE: on the hadamard bools:
+
+ The optional parameter 'hadamard' controls if we are in standard or dual
+ coordinates, and if the codomain is in standard or dual coordinates. By
+ default this is (False, True), meaning we use standard coordinates on
+ the domain A and the codomain B.
+
+ The kernel is then the kernel K_2 where the action is by sign. Other
+ possibilities: - (False, False): standard coordinates on A, dual
+ coordinates on B - (True, True): start in dual coordinates on A
+ (alternatively: standard coordinates on A but quotient by K_1 whose
+ action is by permutation), and standard coordinates on B. - (True,
+ False): dual coordinates on A and B
+
+ These can be composed as follows for A -> B -> C:
+
+ - (False, True) -> (False, True) (False, False) -> (True, True):
+ - standard coordinates on A and C,
+ - standard/resp dual coordinates on B
+ - (False, True) -> (False, False) (False, False) -> (True, False):
+ - standard coordinates on A,
+ - dual coordinates on C,
+ - standard/resp dual coordinates on B
+ - (True, True) -> (False, True) (True, False) -> (True, True):
+ - dual coordinates on A,
+ - standard coordinates on C,
+ - standard/resp dual coordiantes on B
+ - (True, True) -> (False, False) (True, False) -> (True, False):
+ - dual coordinates on A and C
+ - standard/resp dual coordinates on B
+
+ On the other hand, these gives the multiplication by [2] on A:
+
+ - (False, False) -> (False, True) (False, True) -> (True, True):
+ - doubling in standard coordinates on A
+ - going through dual/standard coordinates on B=A/K_2
+ - (True, False) -> (False, False) (True, True) -> (True, False):
+ - doubling in dual coordinates on A
+ - going through dual/standard coordinates on B=A/K_2
+ (alternatively: doubling in standard coordinates on A going
+ through B'=A/K_1)
+ - (False, False) -> (False, False) (False, True) -> (True, False):
+ - doubling from standard to dual coordinates on A
+ - (True, False) -> (False, True) (True, True) -> (True, True):
+ - doubling from dual to standard coordinates on A
+ """
+ if not isinstance(domain, ThetaStructureDim2):
+ raise ValueError
+ self._domain = domain
+
+ self._hadamard = hadamard
+ self._precomputation = None
+ self._codomain = self._compute_codomain(T1_8, T2_8)
+
+ def _compute_codomain(self, T1, T2):
+ """
+ Given two isotropic points of 8-torsion T1 and T2, compatible with
+ the theta null point, compute the level two theta null point A/K_2
+ """
+ if self._hadamard[0]:
+ xA, xB, _, _ = ThetaPointDim2.to_squared_theta(
+ *ThetaPointDim2.to_hadamard(*T1.coords())
+ )
+ zA, tB, zC, tD = ThetaPointDim2.to_squared_theta(
+ *ThetaPointDim2.to_hadamard(*T2.coords())
+ )
+ else:
+ xA, xB, _, _ = T1.squared_theta()
+ zA, tB, zC, tD = T2.squared_theta()
+
+ if not self._hadamard[0] and self._domain._precomputation:
+ # Batch invert denominators
+ xA_inv, zA_inv, tB_inv = batch_inversion([xA, zA, tB])
+
+ # Compute A, B, C, D
+ A = ZZ(1)
+ B = xB * xA_inv
+ C = zC * zA_inv
+ D = tD * tB_inv * B
+
+ _, _, _, BBinv, CCinv, DDinv = self._domain._arithmetic_precomputation()
+ B_inv = BBinv * B
+ C_inv = CCinv * C
+ D_inv = DDinv * D
+ else:
+ # Batch invert denominators
+ xA_inv, zA_inv, tB_inv, xB_inv, zC_inv, tD_inv = batch_inversion([xA, zA, tB, xB, zC, tD])
+
+ # Compute A, B, C, D
+ A = ZZ(1)
+ B = xB * xA_inv
+ C = zC * zA_inv
+ D = tD * tB_inv * B
+ B_inv = xB_inv * xA
+ C_inv = zC_inv * zA
+ D_inv = tD_inv * tB * B_inv
+
+ # NOTE: some of the computations we did here could be reused for the
+ # arithmetic precomputations of the codomain However, we are always
+ # in the mode (False, True) except the very last isogeny, so we do
+ # not lose much by not doing this optimisation Just in case we need
+ # it later:
+ # - for hadamard=(False, True): we can reuse the arithmetic
+ # precomputation; we do this already above
+ # - for hadamard=(False, False): we can reuse the arithmetic
+ # precomputation as above, and furthermore we could reuse B_inv,
+ # C_inv, D_inv for the precomputation of the codomain
+ # - for hadamard=(True, False): we could reuse B_inv, C_inv, D_inv
+ # for the precomputation of the codomain
+ # - for hadamard=(True, True): nothing to reuse!
+
+ self._precomputation = (B_inv, C_inv, D_inv)
+ if self._hadamard[1]:
+ a, b, c, d = ThetaPointDim2.to_hadamard(A, B, C, D)
+ return ThetaStructureDim2([a, b, c, d], null_point_dual=[A, B, C, D])
+ else:
+ return ThetaStructureDim2([A, B, C, D])
+
+ def __call__(self, P):
+ """
+ Take into input the theta null point of A/K_2, and return the image
+ of the point by the isogeny
+ """
+ if not isinstance(P, ThetaPointDim2):
+ raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input")
+
+ if self._hadamard[0]:
+ xx, yy, zz, tt = ThetaPointDim2.to_squared_theta(
+ *ThetaPointDim2.to_hadamard(*P.coords())
+ )
+ else:
+ xx, yy, zz, tt = P.squared_theta()
+
+ Bi, Ci, Di = self._precomputation
+
+ yy = yy * Bi
+ zz = zz * Ci
+ tt = tt * Di
+
+ image_coords = (xx, yy, zz, tt)
+ if self._hadamard[1]:
+ image_coords = ThetaPointDim2.to_hadamard(*image_coords)
+ return self._codomain(image_coords)
+
+ def dual(self):
+ # Returns the dual isogeny (domain and codomain are inverted).
+ # By convention, the new domain and codomain are in standard coordinates.
+ if self._hadamard[1]:
+ domain=self._codomain.hadamard()
+ else:
+ domain=self._codomain
+ if self._hadamard[0]:
+ codomain=self._domain
+ else:
+ codomain=self._domain.hadamard()
+
+ precomputation = batch_inversion(self._domain.null_point().coords())
+
+ return DualThetaIsogenyDim2(domain,codomain,precomputation)
+
+class DualThetaIsogenyDim2:
+ def __init__(self,domain,codomain,precomputation):
+ self._domain=domain
+ self._codomain=codomain
+ self._precomputation=precomputation
+
+ def __call__(self,P):
+ if not isinstance(P, ThetaPointDim2):
+ raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input")
+
+ xx, yy, zz, tt = P.squared_theta()
+
+ Ai, Bi, Ci, Di = self._precomputation
+
+ xx = xx * Ai
+ yy = yy * Bi
+ zz = zz * Ci
+ tt = tt * Di
+
+ image_coords = (xx, yy, zz, tt)
+ image_coords = ThetaPointDim2.to_hadamard(*image_coords)
+
+ return self._codomain(image_coords)
+
+