diff options
Diffstat (limited to 'theta_lib/basis_change/canonical_basis_dim1.py')
-rw-r--r-- | theta_lib/basis_change/canonical_basis_dim1.py | 76 |
1 files changed, 76 insertions, 0 deletions
diff --git a/theta_lib/basis_change/canonical_basis_dim1.py b/theta_lib/basis_change/canonical_basis_dim1.py new file mode 100644 index 0000000..e1c3d1f --- /dev/null +++ b/theta_lib/basis_change/canonical_basis_dim1.py @@ -0,0 +1,76 @@ +from sage.all import * +from ..utilities.discrete_log import weil_pairing_pari, discrete_log_pari + +def last_four_torsion(E): + a_inv=E.a_invariants() + A =a_inv[1] + if a_inv != (0,A,0,1,0): + raise ValueError("The elliptic curve E is not in the Montgomery model.") + y2=A-2 + y=y2.sqrt() + return E([-1,y,1]) + + +def make_canonical(P,Q,A,preserve_pairing=False): + r""" + Input: + - P,Q: a basis of E[A]. + - A: an integer divisible by 4. + - preserve_pairing: boolean indicating if we want to preserve pairing at level 4. + + Output: + - P1,Q1: basis of E[A]. + - U1,U2: basis of E[4] induced by (P1,Q1) ((A//4)*P1=U1, (A//4)*Q1=U2) such that U2[0]=-1 + and e_4(U1,U2)=i if not preserve_pairing and e_4(U1,U2)=e_4((A//4)*P,(A//4)*Q) if preserve_pairing. + - M: base change matrix (in row convention) from (P1,Q1) to (P,Q). + + We say that (U1,U2) is canonical and that (P1,Q1) induces or lies above a canonical basis. + """ + E=P.curve() + Fp2=E.base_ring() + i=Fp2.gen() + + assert i**2==-1 + + T2=last_four_torsion(E) + V1=(A//4)*P + V2=(A//4)*Q + U1=V1 + U2=V2 + + a1=discrete_log_pari(weil_pairing_pari(U1,T2,4),i,4) + b1=discrete_log_pari(weil_pairing_pari(U2,T2,4),i,4) + + if a1%2!=0: + c1=inverse_mod(a1,4) + d1=c1*b1 + P1=P + Q1=Q-d1*P + U1,U2=U1,U2-d1*U1 + M=matrix(ZZ,[[1,0],[d1,1]]) + else: + c1=inverse_mod(b1,4) + d1=c1*a1 + P1=Q + Q1=P-d1*Q + U1,U2=U2,U1-d1*U2 + M=matrix(ZZ,[[d1,1],[1,0]]) + + if preserve_pairing: + e4=weil_pairing_pari(V1,V2,4) + else: + e4=i + + if weil_pairing_pari(U1,U2,4)!=e4: + U2=-U2 + Q1=-Q1 + M[0,1]=-M[0,1] + M[1,1]=-M[1,1] + + assert (A//4)*P1==U1 + assert (A//4)*Q1==U2 + assert weil_pairing_pari(U1,U2,4)==e4 + assert M[0,0]*P1+M[0,1]*Q1==P + assert M[1,0]*P1+M[1,1]*Q1==Q + + return P1,Q1,U1,U2,M |