Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/utilities/order.py
diff options
context:
space:
mode:
authorRyan Rueger <git@rueg.re>2025-03-01 20:25:41 +0100
committerRyan Rueger <git@rueg.re>2025-03-01 22:11:11 +0100
commitd40de259097c5e8d8fd35539560ca7c3d47523e7 (patch)
tree18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/utilities/order.py
downloadpegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com> Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com> Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com> Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com> Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com> Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s] Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr> Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net> Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/utilities/order.py')
-rw-r--r--theta_lib/utilities/order.py117
1 files changed, 117 insertions, 0 deletions
diff --git a/theta_lib/utilities/order.py b/theta_lib/utilities/order.py
new file mode 100644
index 0000000..223f568
--- /dev/null
+++ b/theta_lib/utilities/order.py
@@ -0,0 +1,117 @@
+# ================================================== #
+# Code to check whether a group element has order D #
+# ================================================== #
+
+"""
+This code has been taken from:
+https://github.com/FESTA-PKE/FESTA-SageMath
+
+Copyright (c) 2023 Andrea Basso, Luciano Maino and Giacomo Pope.
+"""
+
+from sage.all import(
+ ZZ,
+ prod,
+ cached_function
+)
+
+def batch_cofactor_mul_generic(G_list, pis, group_action, lower, upper):
+ """
+ Input: A list of elements `G_list`, such that
+ G is the first entry and the rest is empty
+ in the sublist G_list[lower:upper]
+ A list `pis` of primes p such that
+ their product is D
+ The `group_action` of the group
+ Indices lower and upper
+ Output: None
+
+ NOTE: G_list is created in place
+ """
+
+ # check that indices are valid
+ if lower > upper:
+ raise ValueError(f"Wrong input to cofactor_multiples()")
+
+ # last recursion step does not need any further splitting
+ if upper - lower == 1:
+ return
+
+ # Split list in two parts,
+ # multiply to get new start points for the two sublists,
+ # and call the function recursively for both sublists.
+ mid = lower + (upper - lower + 1) // 2
+ cl, cu = 1, 1
+ for i in range(lower, mid):
+ cu = cu * pis[i]
+ for i in range(mid, upper):
+ cl = cl * pis[i]
+ # cl = prod(pis[lower:mid])
+ # cu = prod(pis[mid:upper])
+
+ G_list[mid] = group_action(G_list[lower], cu)
+ G_list[lower] = group_action(G_list[lower], cl)
+
+ batch_cofactor_mul_generic(G_list, pis, group_action, lower, mid)
+ batch_cofactor_mul_generic(G_list, pis, group_action, mid, upper)
+
+
+@cached_function
+def has_order_constants(D):
+ """
+ Helper function, finds constants to
+ help with has_order_D
+ """
+ D = ZZ(D)
+ pis = [p for p, _ in D.factor()]
+ D_radical = prod(pis)
+ Dtop = D // D_radical
+ return Dtop, pis
+
+
+def has_order_D(G, D, multiplicative=False):
+ """
+ Given an element G in a group, checks if the
+ element has order exactly D. This is much faster
+ than determining its order, and is enough for
+ many checks we need when computing the torsion
+ basis.
+
+ We allow both additive and multiplicative groups
+ which means we can use this when computing the order
+ of points and elements in Fp^k when checking the
+ multiplicative order of the Weil pairing output
+ """
+ # For the case when we work with elements of Fp^k
+ if multiplicative:
+ group_action = lambda a, k: a**k
+ is_identity = lambda a: a == 1
+ identity = 1
+ # For the case when we work with elements of E / Fp^k
+ else:
+ group_action = lambda a, k: k * a
+ is_identity = lambda a: a.is_zero()
+ identity = G.curve()(0)
+
+ if is_identity(G):
+ return False
+
+ D_top, pis = has_order_constants(D)
+
+ # If G is the identity after clearing the top
+ # factors, we can abort early
+ Gtop = group_action(G, D_top)
+ if is_identity(Gtop):
+ return False
+
+ G_list = [identity for _ in range(len(pis))]
+ G_list[0] = Gtop
+
+ # Lastly we have to determine whether removing any prime
+ # factors of the order gives the identity of the group
+ if len(pis) > 1:
+ batch_cofactor_mul_generic(G_list, pis, group_action, 0, len(pis))
+ if not all([not is_identity(G) for G in G_list]):
+ return False
+
+ return True \ No newline at end of file