Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/utilities/fast_sqrt.py
diff options
context:
space:
mode:
authorRyan Rueger <git@rueg.re>2025-03-01 20:25:41 +0100
committerRyan Rueger <git@rueg.re>2025-03-01 22:11:11 +0100
commitd40de259097c5e8d8fd35539560ca7c3d47523e7 (patch)
tree18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/utilities/fast_sqrt.py
downloadpegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com> Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com> Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com> Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com> Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com> Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s] Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr> Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net> Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/utilities/fast_sqrt.py')
-rw-r--r--theta_lib/utilities/fast_sqrt.py55
1 files changed, 55 insertions, 0 deletions
diff --git a/theta_lib/utilities/fast_sqrt.py b/theta_lib/utilities/fast_sqrt.py
new file mode 100644
index 0000000..0609fe5
--- /dev/null
+++ b/theta_lib/utilities/fast_sqrt.py
@@ -0,0 +1,55 @@
+
+# ============================================ #
+# Fast square root and quadratic roots #
+# ============================================ #
+
+"""
+Most of this code has been taken from:
+https://github.com/FESTA-PKE/FESTA-SageMath
+
+Copyright (c) 2023 Andrea Basso, Luciano Maino and Giacomo Pope.
+
+Functions with another Copyright mention are not from the above authors.
+"""
+
+def sqrt_Fp2(a):
+ """
+ Efficiently computes the sqrt
+ of an element in Fp2 using that
+ we always have a prime p such that
+ p ≡ 3 mod 4.
+ """
+ Fp2 = a.parent()
+ p = Fp2.characteristic()
+ i = Fp2.gen() # i = √-1
+
+ a1 = a ** ((p - 3) // 4)
+ x0 = a1 * a
+ alpha = a1 * x0
+
+ if alpha == -1:
+ x = i * x0
+ else:
+ b = (1 + alpha) ** ((p - 1) // 2)
+ x = b * x0
+
+ return x
+
+def n_sqrt(a, n):
+ for _ in range(n):
+ a = sqrt_Fp2(a)
+ return a
+
+def sqrt_Fp(a):
+ """
+ Efficiently computes the sqrt
+ of an element in Fp using that
+ we always have a prime p such that
+ p ≡ 3 mod 4.
+
+ Copyright (c) Pierrick Dartois 2025.
+ """
+ Fp = a.parent()
+ p = Fp.characteristic()
+
+ return a**((p+1)//4)