diff options
author | Pierrick-Dartois <pierrickdartois@icloud.com> | 2025-05-22 18:51:58 +0200 |
---|---|---|
committer | Pierrick-Dartois <pierrickdartois@icloud.com> | 2025-05-22 18:51:58 +0200 |
commit | cb6080eaa4f326d9fce5f0a9157be46e91d55e09 (patch) | |
tree | 4d080ade8db9faa0da5268ab420dad2b02a4e248 /theta_lib/isogenies_dim2 | |
parent | d40de259097c5e8d8fd35539560ca7c3d47523e7 (diff) | |
download | pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.tar.gz pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.tar.bz2 pegasis-cb6080eaa4f326d9fce5f0a9157be46e91d55e09.zip |
Clean up PEGASIS submodule inclusion
Diffstat (limited to 'theta_lib/isogenies_dim2')
-rw-r--r-- | theta_lib/isogenies_dim2/gluing_isogeny_dim2.py | 292 | ||||
-rw-r--r-- | theta_lib/isogenies_dim2/isogeny_chain_dim2.py | 178 | ||||
-rw-r--r-- | theta_lib/isogenies_dim2/isogeny_dim2.py | 229 |
3 files changed, 0 insertions, 699 deletions
diff --git a/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py b/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py deleted file mode 100644 index 2dac387..0000000 --- a/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py +++ /dev/null @@ -1,292 +0,0 @@ -""" -This code is based on a copy of: -https://github.com/ThetaIsogenies/two-isogenies - -MIT License - -Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. -""" - -from sage.all import * -from ..theta_structures.Tuple_point import TuplePoint -from ..theta_structures.Theta_dim2 import ThetaStructureDim2, ThetaPointDim2 -from ..theta_structures.theta_helpers_dim2 import batch_inversion -from ..basis_change.base_change_dim2 import montgomery_to_theta_matrix_dim2, apply_base_change_theta_dim2 -from ..theta_structures.montgomery_theta import lift_kummer_montgomery_point - -class GluingThetaIsogenyDim2: - """ - Compute the gluing isogeny from E1 x E2 (Elliptic Product) -> A (Theta Model) - - Expected input: - - - (K1_8, K2_8) The 8-torsion above the kernel generating the isogeny - - M (Optional) a base change matrix, if this is not including, it can - be derived from [2](K1_8, K2_8) - """ - - def __init__(self, K1_8, K2_8, Theta12, N): - # Double points to get four-torsion, we always need one of these, used - # for the image computations but we'll need both if we wish to derived - # the base change matrix as well - K1_4 = 2*K1_8 - - # Initalise self - # This is the base change matrix for product Theta coordinates (not used, except in the dual) - self._base_change_matrix_theta = N - # Here, base change matrix directly applied to the Montgomery coordinates. null_point_bc is the - # theta null point obtained after applying the base change to the product Theta-structure. - self._base_change_matrix, null_point_bc = montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N, return_null_point = True) - self._domain_bc = ThetaStructureDim2(null_point_bc) - self.T_shift = K1_4 - self._precomputation = None - self._zero_idx = 0 - self._domain_product = Theta12 - self._domain=(K1_8[0].curve(), K1_8[1].curve()) - - # Map points from elliptic product onto the product theta structure - # using the base change matrix - T1_8 = self.base_change(K1_8) - T2_8 = self.base_change(K2_8) - - # Compute the codomain of the gluing isogeny - self._codomain = self._special_compute_codomain(T1_8, T2_8) - - def apply_base_change(self, coords): - """ - Apply the basis change by acting with matrix multiplication, treating - the coordinates as a vector - """ - N = self._base_change_matrix - x, y, z, t = coords - X = N[0, 0] * x + N[0, 1] * y + N[0, 2] * z + N[0, 3] * t - Y = N[1, 0] * x + N[1, 1] * y + N[1, 2] * z + N[1, 3] * t - Z = N[2, 0] * x + N[2, 1] * y + N[2, 2] * z + N[2, 3] * t - T = N[3, 0] * x + N[3, 1] * y + N[3, 2] * z + N[3, 3] * t - - return (X, Y, Z, T) - - def base_change(self, P): - """ - Compute the basis change on a TuplePoint to recover a ThetaPointDim2 of - compatible form - """ - if not isinstance(P, TuplePoint): - raise TypeError("Function assumes that the input is of type `TuplePoint`") - - # extract X,Z coordinates on pairs of points - P1, P2 = P.points() - X1, Z1 = P1[0], P1[2] - X2, Z2 = P2[0], P2[2] - - # Correct in the case of (0 : 0) - if X1 == 0 and Z1 == 0: - X1 = 1 - Z1 = 0 - if X2 == 0 and Z2 == 0: - X2 = 1 - Z2 = 0 - - # Apply the basis transformation on the product - coords = self.apply_base_change([X1 * X2, X1 * Z2, Z1 * X2, Z1 * Z2]) - return coords - - def _special_compute_codomain(self, T1, T2): - """ - Given twzero_matro isotropic points of 8-torsion T1 and T2, compatible with - the theta null point, compute the level two theta null point A/K_2 - """ - xAxByCyD = ThetaPointDim2.to_squared_theta(*T1) - zAtBzYtD = ThetaPointDim2.to_squared_theta(*T2) - - # Find the value of the non-zero index - zero_idx = next((i for i, x in enumerate(xAxByCyD) if x == 0), None) - self._zero_idx = zero_idx - - # Dumb check to make sure everything is OK - assert xAxByCyD[self._zero_idx] == zAtBzYtD[self._zero_idx] == 0 - - # Initialize lists - # The zero index described the permutation - ABCD = [0 for _ in range(4)] - precomp = [0 for _ in range(4)] - - # Compute non-trivial numerators (Others are either 1 or 0) - num_1 = zAtBzYtD[1 ^ self._zero_idx] - num_2 = xAxByCyD[2 ^ self._zero_idx] - num_3 = zAtBzYtD[3 ^ self._zero_idx] - num_4 = xAxByCyD[3 ^ self._zero_idx] - - # Compute and invert non-trivial denominators - den_1, den_2, den_3, den_4 = batch_inversion([num_1, num_2, num_3, num_4]) - - # Compute A, B, C, D - ABCD[0 ^ self._zero_idx] = 0 - ABCD[1 ^ self._zero_idx] = num_1 * den_3 - ABCD[2 ^ self._zero_idx] = num_2 * den_4 - ABCD[3 ^ self._zero_idx] = 1 - - # Compute precomputation for isogeny images - precomp[0 ^ self._zero_idx] = 0 - precomp[1 ^ self._zero_idx] = den_1 * num_3 - precomp[2 ^ self._zero_idx] = den_2 * num_4 - precomp[3 ^ self._zero_idx] = 1 - self._precomputation = precomp - - # Final Hadamard of the above coordinates - a, b, c, d = ThetaPointDim2.to_hadamard(*ABCD) - - return ThetaStructureDim2([a, b, c, d]) - - def special_image(self, P, translate): - """ - When the domain is a non product theta structure on a product of - elliptic curves, we will have one of A,B,C,D=0, so the image is more - difficult. We need to give the coordinates of P but also of - P+Ti, Ti one of the point of 4-torsion used in the isogeny - normalisation - """ - AxByCzDt = ThetaPointDim2.to_squared_theta(*P) - - # We are in the case where at most one of A, B, C, D is - # zero, so we need to account for this - # - # To recover values, we use the translated point to get - AyBxCtDz = ThetaPointDim2.to_squared_theta(*translate) - - # Directly compute y,z,t - y = AxByCzDt[1 ^ self._zero_idx] * self._precomputation[1 ^ self._zero_idx] - z = AxByCzDt[2 ^ self._zero_idx] * self._precomputation[2 ^ self._zero_idx] - t = AxByCzDt[3 ^ self._zero_idx] - - # We can compute x from the translation - # First we need a normalisation - if z != 0: - zb = AyBxCtDz[3 ^ self._zero_idx] - lam = z / zb - else: - tb = AyBxCtDz[2 ^ self._zero_idx] * self._precomputation[2 ^ self._zero_idx] - lam = t / tb - - # Finally we recover x - xb = AyBxCtDz[1 ^ self._zero_idx] * self._precomputation[1 ^ self._zero_idx] - x = xb * lam - - xyzt = [0 for _ in range(4)] - xyzt[0 ^ self._zero_idx] = x - xyzt[1 ^ self._zero_idx] = y - xyzt[2 ^ self._zero_idx] = z - xyzt[3 ^ self._zero_idx] = t - - image = ThetaPointDim2.to_hadamard(*xyzt) - return self._codomain(image) - - def __call__(self, P): - """ - Take into input the theta null point of A/K_2, and return the image - of the point by the isogeny - """ - if not isinstance(P, TuplePoint): - raise TypeError( - "Isogeny image for the gluing isogeny is defined to act on TuplePoints" - ) - - # Compute sum of points on elliptic curve - P_sum_T = P + self.T_shift - - # Push both the point and the translation through the - # completion - iso_P = self.base_change(P) - iso_P_sum_T = self.base_change(P_sum_T) - - return self.special_image(iso_P, iso_P_sum_T) - - def dual(self): - domain = self._codomain.hadamard() - codomain_bc = self._domain_bc.hadamard() - codomain = self._domain - - precomputation = batch_inversion(codomain_bc.null_point_dual()) - - N_split = self._base_change_matrix.inverse() - - return DualGluingThetaIsogenyDim2(domain, codomain_bc, codomain, N_split, precomputation) - - -class DualGluingThetaIsogenyDim2: - def __init__(self, domain, codomain_bc, codomain, N_split, precomputation): - self._domain = domain - self._codomain_bc = codomain_bc # Theta structure - self._codomain = codomain # Elliptic curves E1 and E2 - self._precomputation = precomputation - self._splitting_matrix = N_split - - def __call__(self,P): - # Returns a TuplePoint. - if not isinstance(P, ThetaPointDim2): - raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input") - - xx, yy, zz, tt = P.squared_theta() - - Ai, Bi, Ci, Di = self._precomputation - - xx = xx * Ai - yy = yy * Bi - zz = zz * Ci - tt = tt * Di - - image_coords = (xx, yy, zz, tt) - - X1X2, X1Z2, Z1X2, Z1Z2 = apply_base_change_theta_dim2(self._splitting_matrix, image_coords) - - E1, E2 = self._codomain - - if Z1Z2!=0: - #Z1=1, Z2=Z1Z2 - - Z2_inv=1/Z1Z2 - X2=Z1X2*Z2_inv# Normalize (X2:Z2)=(X2/Z2:1) - - X1=X1Z2*Z2_inv - - assert X1*Z1X2==X1X2 - P1 = lift_kummer_montgomery_point(E1, X1) - P2 = lift_kummer_montgomery_point(E2, X2) - return TuplePoint(P1,P2) - elif Z1X2==0 and X1Z2!=0: - # Case (X1:Z1)=0, X1!=0 and (X2:Z2)!=0 - - X2=X1X2/X1Z2 - P2 = lift_kummer_montgomery_point(E2, X2) - return TuplePoint(E1(0),P2) - elif Z1X2!=0 and X1Z2==0: - # Case (X1:Z1)!=0 and (X2:Z2)=0, X2!=0 - - X1=X1X2/Z1X2 - P1 = lift_kummer_montgomery_point(E1, X1) - return TuplePoint(P1,E2(0)) - else: - return TuplePoint(E1(0),E2(0)) - - - - - diff --git a/theta_lib/isogenies_dim2/isogeny_chain_dim2.py b/theta_lib/isogenies_dim2/isogeny_chain_dim2.py deleted file mode 100644 index 23adb23..0000000 --- a/theta_lib/isogenies_dim2/isogeny_chain_dim2.py +++ /dev/null @@ -1,178 +0,0 @@ -""" -This code is based on a copy of: -https://github.com/ThetaIsogenies/two-isogenies - -MIT License - -Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. -""" - -from sage.all import * -from ..theta_structures.Tuple_point import TuplePoint -from ..theta_structures.Theta_dim2 import ThetaPointDim2 -from .gluing_isogeny_dim2 import GluingThetaIsogenyDim2 -from .isogeny_dim2 import ThetaIsogenyDim2 -from ..utilities.strategy import optimised_strategy - - -class IsogenyChainDim2: - r""" - Given (P1, P2), (Q1, Q2) in (E1 x E2)[2^(n+2)] as the generators of a kernel - of a (2^n, 2^n)-isogeny - - ker(Phi) = <(P1, P2), (Q1, Q2)> - - Input: - - - kernel = TuplePoint(P1, P2), TuplePoint(Q1, Q2): - where points are on the elliptic curves E1, E2 of order 2^(n+2) - - n: the length of the chain - - strategy: the optimises strategy to compute a walk through the graph of - images and doublings with a quasli-linear number of steps - """ - - def __init__(self, kernel, Theta12, M, n, strategy=None): - self.n = n - self.E1, self.E2 = kernel[0].parent_curves() - assert kernel[1].parent_curves() == [self.E1, self.E2] - - self._domain = (self.E1, self.E2) - - if strategy is None: - strategy = self.get_strategy() - self.strategy = strategy - - self._phis = self.isogeny_chain(kernel, Theta12, M) - - self._codomain=self._phis[-1]._codomain - - def get_strategy(self): - return optimised_strategy(self.n) - - def isogeny_chain(self, kernel, Theta12, M): - """ - Compute the isogeny chain and store intermediate isogenies for evaluation - """ - # Extract the CouplePoints from the Kernel - Tp1, Tp2 = kernel - - # Store chain of (2,2)-isogenies - isogeny_chain = [] - - # Bookkeeping for optimal strategy - strat_idx = 0 - level = [0] - ker = (Tp1, Tp2) - kernel_elements = [ker] - - for k in range(self.n): - prev = sum(level) - ker = kernel_elements[-1] - - while prev != (self.n - 1 - k): - level.append(self.strategy[strat_idx]) - - # Perform the doublings - Tp1 = ker[0].double_iter(self.strategy[strat_idx]) - Tp2 = ker[1].double_iter(self.strategy[strat_idx]) - - ker = (Tp1, Tp2) - - # Update kernel elements and bookkeeping variables - kernel_elements.append(ker) - prev += self.strategy[strat_idx] - strat_idx += 1 - - # Compute the codomain from the 8-torsion - Tp1, Tp2 = ker - if k == 0: - phi = GluingThetaIsogenyDim2(Tp1, Tp2, Theta12, M) - else: - phi = ThetaIsogenyDim2(Th, Tp1, Tp2) - - # Update the chain of isogenies - Th = phi._codomain - isogeny_chain.append(phi) - - # Remove elements from list - kernel_elements.pop() - level.pop() - - # Push through points for the next step - kernel_elements = [(phi(T1), phi(T2)) for T1, T2 in kernel_elements] - - return isogeny_chain - - def evaluate_isogeny(self, P): - """ - Given a point P, of type TuplePoint on the domain E1 x E2, computes the - ThetaPointDim2 on the codomain ThetaStructureDim2. - """ - if not isinstance(P, TuplePoint): - raise TypeError( - "IsogenyChainDim2 isogeny expects as input a TuplePoint on the domain product E1 x E2" - ) - n=len(self._phis) - for i in range(n): - P = self._phis[i](P) - return P - - def __call__(self, P): - """ - Evaluate a TuplePoint under the action of this isogeny. - """ - return self.evaluate_isogeny(P) - - def dual(self): - domain = self._codomain - codomain = self._domain - n=len(self._phis) - isogenies=[] - for i in range(n): - isogenies.append(self._phis[n-1-i].dual()) - return DualIsogenyChainDim2(domain, codomain, isogenies) - - -class DualIsogenyChainDim2: - def __init__(self, domain, codomain, isogenies): - self._domain = domain - self._codomain = codomain - self._phis = isogenies - - def evaluate_isogeny(self, P): - """ - Given a ThetaPointDim2 point P on the codomain ThetaStructureDim2, - computes the image TuplePoint on the codomain E1 x E2. - """ - if not isinstance(P, ThetaPointDim2): - raise TypeError( - "DualIsogenyChainDim2 isogeny expects as input a ThetaPointDim2." - ) - n=len(self._phis) - for i in range(n): - P = self._phis[i](P) - return P - - def __call__(self, P): - """ - Evaluate a ThetaPointDim2 under the action of this isogeny. - """ - return self.evaluate_isogeny(P) diff --git a/theta_lib/isogenies_dim2/isogeny_dim2.py b/theta_lib/isogenies_dim2/isogeny_dim2.py deleted file mode 100644 index b740ab1..0000000 --- a/theta_lib/isogenies_dim2/isogeny_dim2.py +++ /dev/null @@ -1,229 +0,0 @@ -""" -This code is based on a copy of: -https://github.com/ThetaIsogenies/two-isogenies - -MIT License - -Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. -""" - -from sage.all import ZZ -from ..theta_structures.Theta_dim2 import ThetaStructureDim2, ThetaPointDim2 -from ..theta_structures.theta_helpers_dim2 import batch_inversion - - -class ThetaIsogenyDim2: - def __init__(self, domain, T1_8, T2_8, hadamard=(False, True)): - """ - Compute a (2,2)-isogeny in the theta model. Expects as input: - - - domain: the ThetaStructureDim2 from which we compute the isogeny - - (T1_8, T2_8): points of 8-torsion above the kernel generating the isogeny - - When the 8-torsion is not available (for example at the end of a long - (2,2)-isogeny chain), the the helper functions in isogeny_sqrt.py - must be used. - - NOTE: on the hadamard bools: - - The optional parameter 'hadamard' controls if we are in standard or dual - coordinates, and if the codomain is in standard or dual coordinates. By - default this is (False, True), meaning we use standard coordinates on - the domain A and the codomain B. - - The kernel is then the kernel K_2 where the action is by sign. Other - possibilities: - (False, False): standard coordinates on A, dual - coordinates on B - (True, True): start in dual coordinates on A - (alternatively: standard coordinates on A but quotient by K_1 whose - action is by permutation), and standard coordinates on B. - (True, - False): dual coordinates on A and B - - These can be composed as follows for A -> B -> C: - - - (False, True) -> (False, True) (False, False) -> (True, True): - - standard coordinates on A and C, - - standard/resp dual coordinates on B - - (False, True) -> (False, False) (False, False) -> (True, False): - - standard coordinates on A, - - dual coordinates on C, - - standard/resp dual coordinates on B - - (True, True) -> (False, True) (True, False) -> (True, True): - - dual coordinates on A, - - standard coordinates on C, - - standard/resp dual coordiantes on B - - (True, True) -> (False, False) (True, False) -> (True, False): - - dual coordinates on A and C - - standard/resp dual coordinates on B - - On the other hand, these gives the multiplication by [2] on A: - - - (False, False) -> (False, True) (False, True) -> (True, True): - - doubling in standard coordinates on A - - going through dual/standard coordinates on B=A/K_2 - - (True, False) -> (False, False) (True, True) -> (True, False): - - doubling in dual coordinates on A - - going through dual/standard coordinates on B=A/K_2 - (alternatively: doubling in standard coordinates on A going - through B'=A/K_1) - - (False, False) -> (False, False) (False, True) -> (True, False): - - doubling from standard to dual coordinates on A - - (True, False) -> (False, True) (True, True) -> (True, True): - - doubling from dual to standard coordinates on A - """ - if not isinstance(domain, ThetaStructureDim2): - raise ValueError - self._domain = domain - - self._hadamard = hadamard - self._precomputation = None - self._codomain = self._compute_codomain(T1_8, T2_8) - - def _compute_codomain(self, T1, T2): - """ - Given two isotropic points of 8-torsion T1 and T2, compatible with - the theta null point, compute the level two theta null point A/K_2 - """ - if self._hadamard[0]: - xA, xB, _, _ = ThetaPointDim2.to_squared_theta( - *ThetaPointDim2.to_hadamard(*T1.coords()) - ) - zA, tB, zC, tD = ThetaPointDim2.to_squared_theta( - *ThetaPointDim2.to_hadamard(*T2.coords()) - ) - else: - xA, xB, _, _ = T1.squared_theta() - zA, tB, zC, tD = T2.squared_theta() - - if not self._hadamard[0] and self._domain._precomputation: - # Batch invert denominators - xA_inv, zA_inv, tB_inv = batch_inversion([xA, zA, tB]) - - # Compute A, B, C, D - A = ZZ(1) - B = xB * xA_inv - C = zC * zA_inv - D = tD * tB_inv * B - - _, _, _, BBinv, CCinv, DDinv = self._domain._arithmetic_precomputation() - B_inv = BBinv * B - C_inv = CCinv * C - D_inv = DDinv * D - else: - # Batch invert denominators - xA_inv, zA_inv, tB_inv, xB_inv, zC_inv, tD_inv = batch_inversion([xA, zA, tB, xB, zC, tD]) - - # Compute A, B, C, D - A = ZZ(1) - B = xB * xA_inv - C = zC * zA_inv - D = tD * tB_inv * B - B_inv = xB_inv * xA - C_inv = zC_inv * zA - D_inv = tD_inv * tB * B_inv - - # NOTE: some of the computations we did here could be reused for the - # arithmetic precomputations of the codomain However, we are always - # in the mode (False, True) except the very last isogeny, so we do - # not lose much by not doing this optimisation Just in case we need - # it later: - # - for hadamard=(False, True): we can reuse the arithmetic - # precomputation; we do this already above - # - for hadamard=(False, False): we can reuse the arithmetic - # precomputation as above, and furthermore we could reuse B_inv, - # C_inv, D_inv for the precomputation of the codomain - # - for hadamard=(True, False): we could reuse B_inv, C_inv, D_inv - # for the precomputation of the codomain - # - for hadamard=(True, True): nothing to reuse! - - self._precomputation = (B_inv, C_inv, D_inv) - if self._hadamard[1]: - a, b, c, d = ThetaPointDim2.to_hadamard(A, B, C, D) - return ThetaStructureDim2([a, b, c, d], null_point_dual=[A, B, C, D]) - else: - return ThetaStructureDim2([A, B, C, D]) - - def __call__(self, P): - """ - Take into input the theta null point of A/K_2, and return the image - of the point by the isogeny - """ - if not isinstance(P, ThetaPointDim2): - raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input") - - if self._hadamard[0]: - xx, yy, zz, tt = ThetaPointDim2.to_squared_theta( - *ThetaPointDim2.to_hadamard(*P.coords()) - ) - else: - xx, yy, zz, tt = P.squared_theta() - - Bi, Ci, Di = self._precomputation - - yy = yy * Bi - zz = zz * Ci - tt = tt * Di - - image_coords = (xx, yy, zz, tt) - if self._hadamard[1]: - image_coords = ThetaPointDim2.to_hadamard(*image_coords) - return self._codomain(image_coords) - - def dual(self): - # Returns the dual isogeny (domain and codomain are inverted). - # By convention, the new domain and codomain are in standard coordinates. - if self._hadamard[1]: - domain=self._codomain.hadamard() - else: - domain=self._codomain - if self._hadamard[0]: - codomain=self._domain - else: - codomain=self._domain.hadamard() - - precomputation = batch_inversion(self._domain.null_point().coords()) - - return DualThetaIsogenyDim2(domain,codomain,precomputation) - -class DualThetaIsogenyDim2: - def __init__(self,domain,codomain,precomputation): - self._domain=domain - self._codomain=codomain - self._precomputation=precomputation - - def __call__(self,P): - if not isinstance(P, ThetaPointDim2): - raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input") - - xx, yy, zz, tt = P.squared_theta() - - Ai, Bi, Ci, Di = self._precomputation - - xx = xx * Ai - yy = yy * Bi - zz = zz * Ci - tt = tt * Di - - image_coords = (xx, yy, zz, tt) - image_coords = ThetaPointDim2.to_hadamard(*image_coords) - - return self._codomain(image_coords) - - |