Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/isogenies_dim2/isogeny_dim2.py
diff options
context:
space:
mode:
authorRyan Rueger <git@rueg.re>2025-03-01 20:25:41 +0100
committerRyan Rueger <git@rueg.re>2025-03-01 22:11:11 +0100
commitd40de259097c5e8d8fd35539560ca7c3d47523e7 (patch)
tree18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/isogenies_dim2/isogeny_dim2.py
downloadpegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com> Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com> Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com> Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com> Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com> Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s] Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr> Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net> Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/isogenies_dim2/isogeny_dim2.py')
-rw-r--r--theta_lib/isogenies_dim2/isogeny_dim2.py229
1 files changed, 229 insertions, 0 deletions
diff --git a/theta_lib/isogenies_dim2/isogeny_dim2.py b/theta_lib/isogenies_dim2/isogeny_dim2.py
new file mode 100644
index 0000000..b740ab1
--- /dev/null
+++ b/theta_lib/isogenies_dim2/isogeny_dim2.py
@@ -0,0 +1,229 @@
+"""
+This code is based on a copy of:
+https://github.com/ThetaIsogenies/two-isogenies
+
+MIT License
+
+Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+"""
+
+from sage.all import ZZ
+from ..theta_structures.Theta_dim2 import ThetaStructureDim2, ThetaPointDim2
+from ..theta_structures.theta_helpers_dim2 import batch_inversion
+
+
+class ThetaIsogenyDim2:
+ def __init__(self, domain, T1_8, T2_8, hadamard=(False, True)):
+ """
+ Compute a (2,2)-isogeny in the theta model. Expects as input:
+
+ - domain: the ThetaStructureDim2 from which we compute the isogeny
+ - (T1_8, T2_8): points of 8-torsion above the kernel generating the isogeny
+
+ When the 8-torsion is not available (for example at the end of a long
+ (2,2)-isogeny chain), the the helper functions in isogeny_sqrt.py
+ must be used.
+
+ NOTE: on the hadamard bools:
+
+ The optional parameter 'hadamard' controls if we are in standard or dual
+ coordinates, and if the codomain is in standard or dual coordinates. By
+ default this is (False, True), meaning we use standard coordinates on
+ the domain A and the codomain B.
+
+ The kernel is then the kernel K_2 where the action is by sign. Other
+ possibilities: - (False, False): standard coordinates on A, dual
+ coordinates on B - (True, True): start in dual coordinates on A
+ (alternatively: standard coordinates on A but quotient by K_1 whose
+ action is by permutation), and standard coordinates on B. - (True,
+ False): dual coordinates on A and B
+
+ These can be composed as follows for A -> B -> C:
+
+ - (False, True) -> (False, True) (False, False) -> (True, True):
+ - standard coordinates on A and C,
+ - standard/resp dual coordinates on B
+ - (False, True) -> (False, False) (False, False) -> (True, False):
+ - standard coordinates on A,
+ - dual coordinates on C,
+ - standard/resp dual coordinates on B
+ - (True, True) -> (False, True) (True, False) -> (True, True):
+ - dual coordinates on A,
+ - standard coordinates on C,
+ - standard/resp dual coordiantes on B
+ - (True, True) -> (False, False) (True, False) -> (True, False):
+ - dual coordinates on A and C
+ - standard/resp dual coordinates on B
+
+ On the other hand, these gives the multiplication by [2] on A:
+
+ - (False, False) -> (False, True) (False, True) -> (True, True):
+ - doubling in standard coordinates on A
+ - going through dual/standard coordinates on B=A/K_2
+ - (True, False) -> (False, False) (True, True) -> (True, False):
+ - doubling in dual coordinates on A
+ - going through dual/standard coordinates on B=A/K_2
+ (alternatively: doubling in standard coordinates on A going
+ through B'=A/K_1)
+ - (False, False) -> (False, False) (False, True) -> (True, False):
+ - doubling from standard to dual coordinates on A
+ - (True, False) -> (False, True) (True, True) -> (True, True):
+ - doubling from dual to standard coordinates on A
+ """
+ if not isinstance(domain, ThetaStructureDim2):
+ raise ValueError
+ self._domain = domain
+
+ self._hadamard = hadamard
+ self._precomputation = None
+ self._codomain = self._compute_codomain(T1_8, T2_8)
+
+ def _compute_codomain(self, T1, T2):
+ """
+ Given two isotropic points of 8-torsion T1 and T2, compatible with
+ the theta null point, compute the level two theta null point A/K_2
+ """
+ if self._hadamard[0]:
+ xA, xB, _, _ = ThetaPointDim2.to_squared_theta(
+ *ThetaPointDim2.to_hadamard(*T1.coords())
+ )
+ zA, tB, zC, tD = ThetaPointDim2.to_squared_theta(
+ *ThetaPointDim2.to_hadamard(*T2.coords())
+ )
+ else:
+ xA, xB, _, _ = T1.squared_theta()
+ zA, tB, zC, tD = T2.squared_theta()
+
+ if not self._hadamard[0] and self._domain._precomputation:
+ # Batch invert denominators
+ xA_inv, zA_inv, tB_inv = batch_inversion([xA, zA, tB])
+
+ # Compute A, B, C, D
+ A = ZZ(1)
+ B = xB * xA_inv
+ C = zC * zA_inv
+ D = tD * tB_inv * B
+
+ _, _, _, BBinv, CCinv, DDinv = self._domain._arithmetic_precomputation()
+ B_inv = BBinv * B
+ C_inv = CCinv * C
+ D_inv = DDinv * D
+ else:
+ # Batch invert denominators
+ xA_inv, zA_inv, tB_inv, xB_inv, zC_inv, tD_inv = batch_inversion([xA, zA, tB, xB, zC, tD])
+
+ # Compute A, B, C, D
+ A = ZZ(1)
+ B = xB * xA_inv
+ C = zC * zA_inv
+ D = tD * tB_inv * B
+ B_inv = xB_inv * xA
+ C_inv = zC_inv * zA
+ D_inv = tD_inv * tB * B_inv
+
+ # NOTE: some of the computations we did here could be reused for the
+ # arithmetic precomputations of the codomain However, we are always
+ # in the mode (False, True) except the very last isogeny, so we do
+ # not lose much by not doing this optimisation Just in case we need
+ # it later:
+ # - for hadamard=(False, True): we can reuse the arithmetic
+ # precomputation; we do this already above
+ # - for hadamard=(False, False): we can reuse the arithmetic
+ # precomputation as above, and furthermore we could reuse B_inv,
+ # C_inv, D_inv for the precomputation of the codomain
+ # - for hadamard=(True, False): we could reuse B_inv, C_inv, D_inv
+ # for the precomputation of the codomain
+ # - for hadamard=(True, True): nothing to reuse!
+
+ self._precomputation = (B_inv, C_inv, D_inv)
+ if self._hadamard[1]:
+ a, b, c, d = ThetaPointDim2.to_hadamard(A, B, C, D)
+ return ThetaStructureDim2([a, b, c, d], null_point_dual=[A, B, C, D])
+ else:
+ return ThetaStructureDim2([A, B, C, D])
+
+ def __call__(self, P):
+ """
+ Take into input the theta null point of A/K_2, and return the image
+ of the point by the isogeny
+ """
+ if not isinstance(P, ThetaPointDim2):
+ raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input")
+
+ if self._hadamard[0]:
+ xx, yy, zz, tt = ThetaPointDim2.to_squared_theta(
+ *ThetaPointDim2.to_hadamard(*P.coords())
+ )
+ else:
+ xx, yy, zz, tt = P.squared_theta()
+
+ Bi, Ci, Di = self._precomputation
+
+ yy = yy * Bi
+ zz = zz * Ci
+ tt = tt * Di
+
+ image_coords = (xx, yy, zz, tt)
+ if self._hadamard[1]:
+ image_coords = ThetaPointDim2.to_hadamard(*image_coords)
+ return self._codomain(image_coords)
+
+ def dual(self):
+ # Returns the dual isogeny (domain and codomain are inverted).
+ # By convention, the new domain and codomain are in standard coordinates.
+ if self._hadamard[1]:
+ domain=self._codomain.hadamard()
+ else:
+ domain=self._codomain
+ if self._hadamard[0]:
+ codomain=self._domain
+ else:
+ codomain=self._domain.hadamard()
+
+ precomputation = batch_inversion(self._domain.null_point().coords())
+
+ return DualThetaIsogenyDim2(domain,codomain,precomputation)
+
+class DualThetaIsogenyDim2:
+ def __init__(self,domain,codomain,precomputation):
+ self._domain=domain
+ self._codomain=codomain
+ self._precomputation=precomputation
+
+ def __call__(self,P):
+ if not isinstance(P, ThetaPointDim2):
+ raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input")
+
+ xx, yy, zz, tt = P.squared_theta()
+
+ Ai, Bi, Ci, Di = self._precomputation
+
+ xx = xx * Ai
+ yy = yy * Bi
+ zz = zz * Ci
+ tt = tt * Di
+
+ image_coords = (xx, yy, zz, tt)
+ image_coords = ThetaPointDim2.to_hadamard(*image_coords)
+
+ return self._codomain(image_coords)
+
+