Ryan Rueger

ryan@rueg.re / picture / key / home
aboutsummaryrefslogtreecommitdiffhomepage
path: root/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py
diff options
context:
space:
mode:
authorRyan Rueger <git@rueg.re>2025-03-01 20:25:41 +0100
committerRyan Rueger <git@rueg.re>2025-03-01 22:11:11 +0100
commitd40de259097c5e8d8fd35539560ca7c3d47523e7 (patch)
tree18e0f94350a2329060c2a19b56b0e3e2fdae56f1 /theta_lib/isogenies_dim2/gluing_isogeny_dim2.py
downloadpegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.gz
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.tar.bz2
pegasis-d40de259097c5e8d8fd35539560ca7c3d47523e7.zip
Initial Commit
Co-Authored-By: Damien Robert <Damien.Olivier.Robert+git@gmail.com> Co-Authored-By: Frederik Vercauteren <frederik.vercauteren@gmail.com> Co-Authored-By: Jonathan Komada Eriksen <jonathan.eriksen97@gmail.com> Co-Authored-By: Pierrick Dartois <pierrickdartois@icloud.com> Co-Authored-By: Riccardo Invernizzi <nidadoni@gmail.com> Co-Authored-By: Ryan Rueger <git@rueg.re> [0.01s] Co-Authored-By: Benjamin Wesolowski <benjamin@pasch.umpa.ens-lyon.fr> Co-Authored-By: Arthur Herlédan Le Merdy <ahlm@riseup.net> Co-Authored-By: Boris Fouotsa <tako.fouotsa@epfl.ch>
Diffstat (limited to 'theta_lib/isogenies_dim2/gluing_isogeny_dim2.py')
-rw-r--r--theta_lib/isogenies_dim2/gluing_isogeny_dim2.py292
1 files changed, 292 insertions, 0 deletions
diff --git a/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py b/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py
new file mode 100644
index 0000000..2dac387
--- /dev/null
+++ b/theta_lib/isogenies_dim2/gluing_isogeny_dim2.py
@@ -0,0 +1,292 @@
+"""
+This code is based on a copy of:
+https://github.com/ThetaIsogenies/two-isogenies
+
+MIT License
+
+Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+"""
+
+from sage.all import *
+from ..theta_structures.Tuple_point import TuplePoint
+from ..theta_structures.Theta_dim2 import ThetaStructureDim2, ThetaPointDim2
+from ..theta_structures.theta_helpers_dim2 import batch_inversion
+from ..basis_change.base_change_dim2 import montgomery_to_theta_matrix_dim2, apply_base_change_theta_dim2
+from ..theta_structures.montgomery_theta import lift_kummer_montgomery_point
+
+class GluingThetaIsogenyDim2:
+ """
+ Compute the gluing isogeny from E1 x E2 (Elliptic Product) -> A (Theta Model)
+
+ Expected input:
+
+ - (K1_8, K2_8) The 8-torsion above the kernel generating the isogeny
+ - M (Optional) a base change matrix, if this is not including, it can
+ be derived from [2](K1_8, K2_8)
+ """
+
+ def __init__(self, K1_8, K2_8, Theta12, N):
+ # Double points to get four-torsion, we always need one of these, used
+ # for the image computations but we'll need both if we wish to derived
+ # the base change matrix as well
+ K1_4 = 2*K1_8
+
+ # Initalise self
+ # This is the base change matrix for product Theta coordinates (not used, except in the dual)
+ self._base_change_matrix_theta = N
+ # Here, base change matrix directly applied to the Montgomery coordinates. null_point_bc is the
+ # theta null point obtained after applying the base change to the product Theta-structure.
+ self._base_change_matrix, null_point_bc = montgomery_to_theta_matrix_dim2(Theta12.zero().coords(),N, return_null_point = True)
+ self._domain_bc = ThetaStructureDim2(null_point_bc)
+ self.T_shift = K1_4
+ self._precomputation = None
+ self._zero_idx = 0
+ self._domain_product = Theta12
+ self._domain=(K1_8[0].curve(), K1_8[1].curve())
+
+ # Map points from elliptic product onto the product theta structure
+ # using the base change matrix
+ T1_8 = self.base_change(K1_8)
+ T2_8 = self.base_change(K2_8)
+
+ # Compute the codomain of the gluing isogeny
+ self._codomain = self._special_compute_codomain(T1_8, T2_8)
+
+ def apply_base_change(self, coords):
+ """
+ Apply the basis change by acting with matrix multiplication, treating
+ the coordinates as a vector
+ """
+ N = self._base_change_matrix
+ x, y, z, t = coords
+ X = N[0, 0] * x + N[0, 1] * y + N[0, 2] * z + N[0, 3] * t
+ Y = N[1, 0] * x + N[1, 1] * y + N[1, 2] * z + N[1, 3] * t
+ Z = N[2, 0] * x + N[2, 1] * y + N[2, 2] * z + N[2, 3] * t
+ T = N[3, 0] * x + N[3, 1] * y + N[3, 2] * z + N[3, 3] * t
+
+ return (X, Y, Z, T)
+
+ def base_change(self, P):
+ """
+ Compute the basis change on a TuplePoint to recover a ThetaPointDim2 of
+ compatible form
+ """
+ if not isinstance(P, TuplePoint):
+ raise TypeError("Function assumes that the input is of type `TuplePoint`")
+
+ # extract X,Z coordinates on pairs of points
+ P1, P2 = P.points()
+ X1, Z1 = P1[0], P1[2]
+ X2, Z2 = P2[0], P2[2]
+
+ # Correct in the case of (0 : 0)
+ if X1 == 0 and Z1 == 0:
+ X1 = 1
+ Z1 = 0
+ if X2 == 0 and Z2 == 0:
+ X2 = 1
+ Z2 = 0
+
+ # Apply the basis transformation on the product
+ coords = self.apply_base_change([X1 * X2, X1 * Z2, Z1 * X2, Z1 * Z2])
+ return coords
+
+ def _special_compute_codomain(self, T1, T2):
+ """
+ Given twzero_matro isotropic points of 8-torsion T1 and T2, compatible with
+ the theta null point, compute the level two theta null point A/K_2
+ """
+ xAxByCyD = ThetaPointDim2.to_squared_theta(*T1)
+ zAtBzYtD = ThetaPointDim2.to_squared_theta(*T2)
+
+ # Find the value of the non-zero index
+ zero_idx = next((i for i, x in enumerate(xAxByCyD) if x == 0), None)
+ self._zero_idx = zero_idx
+
+ # Dumb check to make sure everything is OK
+ assert xAxByCyD[self._zero_idx] == zAtBzYtD[self._zero_idx] == 0
+
+ # Initialize lists
+ # The zero index described the permutation
+ ABCD = [0 for _ in range(4)]
+ precomp = [0 for _ in range(4)]
+
+ # Compute non-trivial numerators (Others are either 1 or 0)
+ num_1 = zAtBzYtD[1 ^ self._zero_idx]
+ num_2 = xAxByCyD[2 ^ self._zero_idx]
+ num_3 = zAtBzYtD[3 ^ self._zero_idx]
+ num_4 = xAxByCyD[3 ^ self._zero_idx]
+
+ # Compute and invert non-trivial denominators
+ den_1, den_2, den_3, den_4 = batch_inversion([num_1, num_2, num_3, num_4])
+
+ # Compute A, B, C, D
+ ABCD[0 ^ self._zero_idx] = 0
+ ABCD[1 ^ self._zero_idx] = num_1 * den_3
+ ABCD[2 ^ self._zero_idx] = num_2 * den_4
+ ABCD[3 ^ self._zero_idx] = 1
+
+ # Compute precomputation for isogeny images
+ precomp[0 ^ self._zero_idx] = 0
+ precomp[1 ^ self._zero_idx] = den_1 * num_3
+ precomp[2 ^ self._zero_idx] = den_2 * num_4
+ precomp[3 ^ self._zero_idx] = 1
+ self._precomputation = precomp
+
+ # Final Hadamard of the above coordinates
+ a, b, c, d = ThetaPointDim2.to_hadamard(*ABCD)
+
+ return ThetaStructureDim2([a, b, c, d])
+
+ def special_image(self, P, translate):
+ """
+ When the domain is a non product theta structure on a product of
+ elliptic curves, we will have one of A,B,C,D=0, so the image is more
+ difficult. We need to give the coordinates of P but also of
+ P+Ti, Ti one of the point of 4-torsion used in the isogeny
+ normalisation
+ """
+ AxByCzDt = ThetaPointDim2.to_squared_theta(*P)
+
+ # We are in the case where at most one of A, B, C, D is
+ # zero, so we need to account for this
+ #
+ # To recover values, we use the translated point to get
+ AyBxCtDz = ThetaPointDim2.to_squared_theta(*translate)
+
+ # Directly compute y,z,t
+ y = AxByCzDt[1 ^ self._zero_idx] * self._precomputation[1 ^ self._zero_idx]
+ z = AxByCzDt[2 ^ self._zero_idx] * self._precomputation[2 ^ self._zero_idx]
+ t = AxByCzDt[3 ^ self._zero_idx]
+
+ # We can compute x from the translation
+ # First we need a normalisation
+ if z != 0:
+ zb = AyBxCtDz[3 ^ self._zero_idx]
+ lam = z / zb
+ else:
+ tb = AyBxCtDz[2 ^ self._zero_idx] * self._precomputation[2 ^ self._zero_idx]
+ lam = t / tb
+
+ # Finally we recover x
+ xb = AyBxCtDz[1 ^ self._zero_idx] * self._precomputation[1 ^ self._zero_idx]
+ x = xb * lam
+
+ xyzt = [0 for _ in range(4)]
+ xyzt[0 ^ self._zero_idx] = x
+ xyzt[1 ^ self._zero_idx] = y
+ xyzt[2 ^ self._zero_idx] = z
+ xyzt[3 ^ self._zero_idx] = t
+
+ image = ThetaPointDim2.to_hadamard(*xyzt)
+ return self._codomain(image)
+
+ def __call__(self, P):
+ """
+ Take into input the theta null point of A/K_2, and return the image
+ of the point by the isogeny
+ """
+ if not isinstance(P, TuplePoint):
+ raise TypeError(
+ "Isogeny image for the gluing isogeny is defined to act on TuplePoints"
+ )
+
+ # Compute sum of points on elliptic curve
+ P_sum_T = P + self.T_shift
+
+ # Push both the point and the translation through the
+ # completion
+ iso_P = self.base_change(P)
+ iso_P_sum_T = self.base_change(P_sum_T)
+
+ return self.special_image(iso_P, iso_P_sum_T)
+
+ def dual(self):
+ domain = self._codomain.hadamard()
+ codomain_bc = self._domain_bc.hadamard()
+ codomain = self._domain
+
+ precomputation = batch_inversion(codomain_bc.null_point_dual())
+
+ N_split = self._base_change_matrix.inverse()
+
+ return DualGluingThetaIsogenyDim2(domain, codomain_bc, codomain, N_split, precomputation)
+
+
+class DualGluingThetaIsogenyDim2:
+ def __init__(self, domain, codomain_bc, codomain, N_split, precomputation):
+ self._domain = domain
+ self._codomain_bc = codomain_bc # Theta structure
+ self._codomain = codomain # Elliptic curves E1 and E2
+ self._precomputation = precomputation
+ self._splitting_matrix = N_split
+
+ def __call__(self,P):
+ # Returns a TuplePoint.
+ if not isinstance(P, ThetaPointDim2):
+ raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input")
+
+ xx, yy, zz, tt = P.squared_theta()
+
+ Ai, Bi, Ci, Di = self._precomputation
+
+ xx = xx * Ai
+ yy = yy * Bi
+ zz = zz * Ci
+ tt = tt * Di
+
+ image_coords = (xx, yy, zz, tt)
+
+ X1X2, X1Z2, Z1X2, Z1Z2 = apply_base_change_theta_dim2(self._splitting_matrix, image_coords)
+
+ E1, E2 = self._codomain
+
+ if Z1Z2!=0:
+ #Z1=1, Z2=Z1Z2
+
+ Z2_inv=1/Z1Z2
+ X2=Z1X2*Z2_inv# Normalize (X2:Z2)=(X2/Z2:1)
+
+ X1=X1Z2*Z2_inv
+
+ assert X1*Z1X2==X1X2
+ P1 = lift_kummer_montgomery_point(E1, X1)
+ P2 = lift_kummer_montgomery_point(E2, X2)
+ return TuplePoint(P1,P2)
+ elif Z1X2==0 and X1Z2!=0:
+ # Case (X1:Z1)=0, X1!=0 and (X2:Z2)!=0
+
+ X2=X1X2/X1Z2
+ P2 = lift_kummer_montgomery_point(E2, X2)
+ return TuplePoint(E1(0),P2)
+ elif Z1X2!=0 and X1Z2==0:
+ # Case (X1:Z1)!=0 and (X2:Z2)=0, X2!=0
+
+ X1=X1X2/Z1X2
+ P1 = lift_kummer_montgomery_point(E1, X1)
+ return TuplePoint(P1,E2(0))
+ else:
+ return TuplePoint(E1(0),E2(0))
+
+
+
+
+