from sage.all import * import itertools ## Index management @cached_function def index_to_multindex(k): r""" Input: - k: integer between 0 and 15. Output: binary decomposition of k. """ L_ind=[] l=k for i in range(4): L_ind.append(l%2) l=l//2 return tuple(L_ind) @cached_function def multindex_to_index(*args): r""" Input: 4 elements i0,i1,i2,i3 in {0,1}. Output: k=i0+2*i1+4*i2+8*i3. """ if len(args)==4: i0,i1,i2,i3=args else: i0,i1,i2,i3=args[0] return i0+2*i1+4*i2+8*i3 @cached_function def scal_prod(i,j): r""" Input: Two integers i and j in {0,...,15}. Output: Scalar product of the bits of i and j mod 2. """ return (int(i)&int(j)).bit_count()%2 def act_point(P,I,J): r""" Input: - P: a point with 16 coordinates. - I, J: two 4-tuples of indices in {0,1}. Output: the action of (I,\chi_J) on P given by: (I,\chi_J)*P=(\chi_J(I+K)^{-1}P[I+K])_K """ Q=[] i=multindex_to_index(I) j=multindex_to_index(J) for k in range(16): ipk=i^k Q.append((-1)**scal_prod(ipk,j)*P[ipk]) return Q ## Product of theta points def product_theta_point_dim4(P0,P1,P2,P3): # Computes the product theta coordinates of a product of 4 elliptic curves. P=[0 for k in range(16)] for i0, i1, i2, i3 in itertools.product([0,1],repeat=4): P[multindex_to_index(i0,i1,i2,i3)]=P0[i0]*P1[i1]*P2[i2]*P3[i3] return P def product_theta_point_dim2_dim4(P0,P1): # Computes the product theta coordinates of a product of 2 abelian surfaces. P=[0 for k in range(16)] for i0, i1, i2, i3 in itertools.product([0,1],repeat=4): P[multindex_to_index(i0,i1,i2,i3)]=P0[i0+2*i1]*P1[i2+2*i3] return P ## 4-dimensional product Theta point to 1-dimensional Theta points def product_to_theta_points_dim4(P): Fp2=P[0].parent() d_Pi={0:None,1:None,2:None,3:None} d_index_ratios={0:None,1:None,2:None,3:None}# Index of numertors/denominators to compute the theta points. for k in range(4): is_zero=True# theta_1(Pk)=0 for I in itertools.product([0,1],repeat=3): J=list(I) J.insert(k,1) j=multindex_to_index(*J) if P[j]!=0: is_zero=False d_index_ratios[k]=[j^(2**k),j] break if is_zero: d_Pi[k]=(Fp2(1),Fp2(0)) L_num=[] L_denom=[] d_index_num_denom={} for k in range(4): if d_Pi[k]==None:# Point has non-zero coordinate theta_1 d_index_num_denom[k]=len(L_num) L_num.append(P[d_index_ratios[k][0]]) L_denom.append(P[d_index_ratios[k][1]]) L_denom=batch_inversion(L_denom) for k in range(4): if d_Pi[k]==None: d_Pi[k]=(L_num[d_index_num_denom[k]]*L_denom[d_index_num_denom[k]],Fp2(1)) return d_Pi[0],d_Pi[1],d_Pi[2],d_Pi[3] ## 4-dimensional product Theta point to 2-dimensional Theta points def product_to_theta_points_dim4_dim2(P): Fp2=P[0].parent() k0=0# Index of the denominator k0=multindex_to_index(I0,J0) and # we divide by theta_{I0,J0}=theta_{I0}*theta_{J0}!=0 while k0<=15 and P[k0]==0: k0+=1 i0, j0 = k0%4, k0//4 inv_theta_k0=1/P[k0] theta_P1=[] theta_P2=[] for i in range(4): if i==i0: theta_P1.append(1) else: theta_P1.append(P[i+4*j0]*inv_theta_k0) for j in range(4): if j==j0: theta_P2.append(1) else: theta_P2.append(P[i0+4*j]*inv_theta_k0) return theta_P1, theta_P2 ## Usual theta transformations @cached_function def inv_16(F): return 1/F(16) def hadamard2(x,y): return (x+y, x-y) def hadamard4(x,y,z,t): x,y=hadamard2(x,y) z,t=hadamard2(z,t) return (x+z, y+t, x-z, y-t) def hadamard8(a,b,c,d,e,f,g,h): a,b,c,d=hadamard4(a,b,c,d) e,f,g,h=hadamard4(e,f,g,h) return (a+e, b+f, c+g, d+h, a-e, b-f, c-g, d-h) def hadamard16(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p): a,b,c,d,e,f,g,h=hadamard8(a,b,c,d,e,f,g,h) i,j,k,l,m,n,o,p=hadamard8(i,j,k,l,m,n,o,p) return (a+i, b+j, c+k, d+l, e+m, f+n, g+o, h+p, a-i, b-j, c-k, d-l, e-m, f-n, g-o, h-p) def hadamard_inline(a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p): a,b=a+b,a-b c,d=c+d,c-d e,f=e+f,e-f g,h=g+h,g-h i,j=i+j,i-j k,l=k+l,k-l m,n=m+n,m-n o,p=o+p,o-p a,b,c,d=a+c,b+d,a-c,b-d e,f,g,h=e+g,f+h,e-g,f-h i,j,k,l=i+k,j+l,i-k,j-l m,n,o,p=m+o,n+p,m-o,n-p a,b,c,d,e,f,g,h=a+e, b+f, c+g, d+h, a-e, b-f, c-g, d-h i,j,k,l,m,n,o,p=i+m,j+n,k+o,l+p,i-m,j-n,k-o,l-p return (a+i, b+j, c+k, d+l, e+m, f+n, g+o, h+p, a-i, b-j, c-k, d-l, e-m, f-n, g-o, h-p) def hadamard(P): return hadamard16(*P) #return hadamard_inline(*P) def hadamard_inverse(P): H_inv_P=[] C=inv_16(P[0].parent()) for j in range(16): HP.append(0) for k in range(16): if scal_prod(k,j)==0: H_inv_P[j]+=P[k] else: H_inv_P[j]-=P[k] H_inv_P[j]=H_inv_P[j]*C return H_inv_P def squared(P): return [x**2 for x in P] def batch_inversion(L): r"""Does n inversions in 3(n-1)M+1I. Input: - L: list of elements to invert. Output: - [1/x for x in L] """ # Given L=[a0,...,an] # Computes multiples=[a0, a0.a1, ..., a0...an] multiples=[L[0]] for ai in L[1:]: multiples.append(multiples[-1]*ai) # Computes inverses=[1/(a0...an),...,1/a0] inverses=[1/multiples[-1]] for i in range(1,len(L)): inverses.append(inverses[-1]*L[-i]) # Finally computes [1/a0,...,1/an] result=[inverses[-1]] for i in range(2,len(L)+1): result.append(inverses[-i]*multiples[i-2]) return result ## Functions to handle zero theta coordinates def find_zeros(P): L_ind_zeros=[] for i in range(16): if P[i]==0: L_ind_zeros.append(i) return L_ind_zeros def find_translates(L_ind_zeros): L_ind_non_zero=[] L_ind_origin=L_ind_zeros.copy() for i in range(16): if i not in L_ind_zeros: L_ind_non_zero.append(i) L_trans=[] while L_ind_origin!=[]: n_target_max=0 ind_trans_max=0 for k in range(16): trans=[x^k for x in L_ind_origin] n_target=0 for y in trans: if y in L_ind_non_zero: n_target+=1 if n_target>n_target_max: n_target_max=n_target ind_trans_max=k L_trans.append(ind_trans_max) L_ind_remove=[] for x in L_ind_origin: if x^ind_trans_max in L_ind_non_zero: L_ind_remove.append(x) for x in L_ind_remove: L_ind_origin.remove(x) return L_trans