""" This code is based on a copy of: https://github.com/ThetaIsogenies/two-isogenies MIT License Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from sage.all import * from ..theta_structures.Tuple_point import TuplePoint from ..theta_structures.Theta_dim2 import ThetaPointDim2 from .gluing_isogeny_dim2 import GluingThetaIsogenyDim2 from .isogeny_dim2 import ThetaIsogenyDim2 from ..utilities.strategy import optimised_strategy class IsogenyChainDim2: r""" Given (P1, P2), (Q1, Q2) in (E1 x E2)[2^(n+2)] as the generators of a kernel of a (2^n, 2^n)-isogeny ker(Phi) = <(P1, P2), (Q1, Q2)> Input: - kernel = TuplePoint(P1, P2), TuplePoint(Q1, Q2): where points are on the elliptic curves E1, E2 of order 2^(n+2) - n: the length of the chain - strategy: the optimises strategy to compute a walk through the graph of images and doublings with a quasli-linear number of steps """ def __init__(self, kernel, Theta12, M, n, strategy=None): self.n = n self.E1, self.E2 = kernel[0].parent_curves() assert kernel[1].parent_curves() == [self.E1, self.E2] self._domain = (self.E1, self.E2) if strategy is None: strategy = self.get_strategy() self.strategy = strategy self._phis = self.isogeny_chain(kernel, Theta12, M) self._codomain=self._phis[-1]._codomain def get_strategy(self): return optimised_strategy(self.n) def isogeny_chain(self, kernel, Theta12, M): """ Compute the isogeny chain and store intermediate isogenies for evaluation """ # Extract the CouplePoints from the Kernel Tp1, Tp2 = kernel # Store chain of (2,2)-isogenies isogeny_chain = [] # Bookkeeping for optimal strategy strat_idx = 0 level = [0] ker = (Tp1, Tp2) kernel_elements = [ker] for k in range(self.n): prev = sum(level) ker = kernel_elements[-1] while prev != (self.n - 1 - k): level.append(self.strategy[strat_idx]) # Perform the doublings Tp1 = ker[0].double_iter(self.strategy[strat_idx]) Tp2 = ker[1].double_iter(self.strategy[strat_idx]) ker = (Tp1, Tp2) # Update kernel elements and bookkeeping variables kernel_elements.append(ker) prev += self.strategy[strat_idx] strat_idx += 1 # Compute the codomain from the 8-torsion Tp1, Tp2 = ker if k == 0: phi = GluingThetaIsogenyDim2(Tp1, Tp2, Theta12, M) else: phi = ThetaIsogenyDim2(Th, Tp1, Tp2) # Update the chain of isogenies Th = phi._codomain isogeny_chain.append(phi) # Remove elements from list kernel_elements.pop() level.pop() # Push through points for the next step kernel_elements = [(phi(T1), phi(T2)) for T1, T2 in kernel_elements] return isogeny_chain def evaluate_isogeny(self, P): """ Given a point P, of type TuplePoint on the domain E1 x E2, computes the ThetaPointDim2 on the codomain ThetaStructureDim2. """ if not isinstance(P, TuplePoint): raise TypeError( "IsogenyChainDim2 isogeny expects as input a TuplePoint on the domain product E1 x E2" ) n=len(self._phis) for i in range(n): P = self._phis[i](P) return P def __call__(self, P): """ Evaluate a TuplePoint under the action of this isogeny. """ return self.evaluate_isogeny(P) def dual(self): domain = self._codomain codomain = self._domain n=len(self._phis) isogenies=[] for i in range(n): isogenies.append(self._phis[n-1-i].dual()) return DualIsogenyChainDim2(domain, codomain, isogenies) class DualIsogenyChainDim2: def __init__(self, domain, codomain, isogenies): self._domain = domain self._codomain = codomain self._phis = isogenies def evaluate_isogeny(self, P): """ Given a ThetaPointDim2 point P on the codomain ThetaStructureDim2, computes the image TuplePoint on the codomain E1 x E2. """ if not isinstance(P, ThetaPointDim2): raise TypeError( "DualIsogenyChainDim2 isogeny expects as input a ThetaPointDim2." ) n=len(self._phis) for i in range(n): P = self._phis[i](P) return P def __call__(self, P): """ Evaluate a ThetaPointDim2 under the action of this isogeny. """ return self.evaluate_isogeny(P)