diff options
Diffstat (limited to 'theta_lib/isogenies_dim2/isogeny_dim2.py')
-rw-r--r-- | theta_lib/isogenies_dim2/isogeny_dim2.py | 229 |
1 files changed, 0 insertions, 229 deletions
diff --git a/theta_lib/isogenies_dim2/isogeny_dim2.py b/theta_lib/isogenies_dim2/isogeny_dim2.py deleted file mode 100644 index b740ab1..0000000 --- a/theta_lib/isogenies_dim2/isogeny_dim2.py +++ /dev/null @@ -1,229 +0,0 @@ -""" -This code is based on a copy of: -https://github.com/ThetaIsogenies/two-isogenies - -MIT License - -Copyright (c) 2023 Pierrick Dartois, Luciano Maino, Giacomo Pope and Damien Robert - -Permission is hereby granted, free of charge, to any person obtaining a copy -of this software and associated documentation files (the "Software"), to deal -in the Software without restriction, including without limitation the rights -to use, copy, modify, merge, publish, distribute, sublicense, and/or sell -copies of the Software, and to permit persons to whom the Software is -furnished to do so, subject to the following conditions: - -The above copyright notice and this permission notice shall be included in all -copies or substantial portions of the Software. - -THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR -IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, -FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE -AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER -LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, -OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE -SOFTWARE. -""" - -from sage.all import ZZ -from ..theta_structures.Theta_dim2 import ThetaStructureDim2, ThetaPointDim2 -from ..theta_structures.theta_helpers_dim2 import batch_inversion - - -class ThetaIsogenyDim2: - def __init__(self, domain, T1_8, T2_8, hadamard=(False, True)): - """ - Compute a (2,2)-isogeny in the theta model. Expects as input: - - - domain: the ThetaStructureDim2 from which we compute the isogeny - - (T1_8, T2_8): points of 8-torsion above the kernel generating the isogeny - - When the 8-torsion is not available (for example at the end of a long - (2,2)-isogeny chain), the the helper functions in isogeny_sqrt.py - must be used. - - NOTE: on the hadamard bools: - - The optional parameter 'hadamard' controls if we are in standard or dual - coordinates, and if the codomain is in standard or dual coordinates. By - default this is (False, True), meaning we use standard coordinates on - the domain A and the codomain B. - - The kernel is then the kernel K_2 where the action is by sign. Other - possibilities: - (False, False): standard coordinates on A, dual - coordinates on B - (True, True): start in dual coordinates on A - (alternatively: standard coordinates on A but quotient by K_1 whose - action is by permutation), and standard coordinates on B. - (True, - False): dual coordinates on A and B - - These can be composed as follows for A -> B -> C: - - - (False, True) -> (False, True) (False, False) -> (True, True): - - standard coordinates on A and C, - - standard/resp dual coordinates on B - - (False, True) -> (False, False) (False, False) -> (True, False): - - standard coordinates on A, - - dual coordinates on C, - - standard/resp dual coordinates on B - - (True, True) -> (False, True) (True, False) -> (True, True): - - dual coordinates on A, - - standard coordinates on C, - - standard/resp dual coordiantes on B - - (True, True) -> (False, False) (True, False) -> (True, False): - - dual coordinates on A and C - - standard/resp dual coordinates on B - - On the other hand, these gives the multiplication by [2] on A: - - - (False, False) -> (False, True) (False, True) -> (True, True): - - doubling in standard coordinates on A - - going through dual/standard coordinates on B=A/K_2 - - (True, False) -> (False, False) (True, True) -> (True, False): - - doubling in dual coordinates on A - - going through dual/standard coordinates on B=A/K_2 - (alternatively: doubling in standard coordinates on A going - through B'=A/K_1) - - (False, False) -> (False, False) (False, True) -> (True, False): - - doubling from standard to dual coordinates on A - - (True, False) -> (False, True) (True, True) -> (True, True): - - doubling from dual to standard coordinates on A - """ - if not isinstance(domain, ThetaStructureDim2): - raise ValueError - self._domain = domain - - self._hadamard = hadamard - self._precomputation = None - self._codomain = self._compute_codomain(T1_8, T2_8) - - def _compute_codomain(self, T1, T2): - """ - Given two isotropic points of 8-torsion T1 and T2, compatible with - the theta null point, compute the level two theta null point A/K_2 - """ - if self._hadamard[0]: - xA, xB, _, _ = ThetaPointDim2.to_squared_theta( - *ThetaPointDim2.to_hadamard(*T1.coords()) - ) - zA, tB, zC, tD = ThetaPointDim2.to_squared_theta( - *ThetaPointDim2.to_hadamard(*T2.coords()) - ) - else: - xA, xB, _, _ = T1.squared_theta() - zA, tB, zC, tD = T2.squared_theta() - - if not self._hadamard[0] and self._domain._precomputation: - # Batch invert denominators - xA_inv, zA_inv, tB_inv = batch_inversion([xA, zA, tB]) - - # Compute A, B, C, D - A = ZZ(1) - B = xB * xA_inv - C = zC * zA_inv - D = tD * tB_inv * B - - _, _, _, BBinv, CCinv, DDinv = self._domain._arithmetic_precomputation() - B_inv = BBinv * B - C_inv = CCinv * C - D_inv = DDinv * D - else: - # Batch invert denominators - xA_inv, zA_inv, tB_inv, xB_inv, zC_inv, tD_inv = batch_inversion([xA, zA, tB, xB, zC, tD]) - - # Compute A, B, C, D - A = ZZ(1) - B = xB * xA_inv - C = zC * zA_inv - D = tD * tB_inv * B - B_inv = xB_inv * xA - C_inv = zC_inv * zA - D_inv = tD_inv * tB * B_inv - - # NOTE: some of the computations we did here could be reused for the - # arithmetic precomputations of the codomain However, we are always - # in the mode (False, True) except the very last isogeny, so we do - # not lose much by not doing this optimisation Just in case we need - # it later: - # - for hadamard=(False, True): we can reuse the arithmetic - # precomputation; we do this already above - # - for hadamard=(False, False): we can reuse the arithmetic - # precomputation as above, and furthermore we could reuse B_inv, - # C_inv, D_inv for the precomputation of the codomain - # - for hadamard=(True, False): we could reuse B_inv, C_inv, D_inv - # for the precomputation of the codomain - # - for hadamard=(True, True): nothing to reuse! - - self._precomputation = (B_inv, C_inv, D_inv) - if self._hadamard[1]: - a, b, c, d = ThetaPointDim2.to_hadamard(A, B, C, D) - return ThetaStructureDim2([a, b, c, d], null_point_dual=[A, B, C, D]) - else: - return ThetaStructureDim2([A, B, C, D]) - - def __call__(self, P): - """ - Take into input the theta null point of A/K_2, and return the image - of the point by the isogeny - """ - if not isinstance(P, ThetaPointDim2): - raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input") - - if self._hadamard[0]: - xx, yy, zz, tt = ThetaPointDim2.to_squared_theta( - *ThetaPointDim2.to_hadamard(*P.coords()) - ) - else: - xx, yy, zz, tt = P.squared_theta() - - Bi, Ci, Di = self._precomputation - - yy = yy * Bi - zz = zz * Ci - tt = tt * Di - - image_coords = (xx, yy, zz, tt) - if self._hadamard[1]: - image_coords = ThetaPointDim2.to_hadamard(*image_coords) - return self._codomain(image_coords) - - def dual(self): - # Returns the dual isogeny (domain and codomain are inverted). - # By convention, the new domain and codomain are in standard coordinates. - if self._hadamard[1]: - domain=self._codomain.hadamard() - else: - domain=self._codomain - if self._hadamard[0]: - codomain=self._domain - else: - codomain=self._domain.hadamard() - - precomputation = batch_inversion(self._domain.null_point().coords()) - - return DualThetaIsogenyDim2(domain,codomain,precomputation) - -class DualThetaIsogenyDim2: - def __init__(self,domain,codomain,precomputation): - self._domain=domain - self._codomain=codomain - self._precomputation=precomputation - - def __call__(self,P): - if not isinstance(P, ThetaPointDim2): - raise TypeError("Isogeny evaluation expects a ThetaPointDim2 as input") - - xx, yy, zz, tt = P.squared_theta() - - Ai, Bi, Ci, Di = self._precomputation - - xx = xx * Ai - yy = yy * Bi - zz = zz * Ci - tt = tt * Di - - image_coords = (xx, yy, zz, tt) - image_coords = ThetaPointDim2.to_hadamard(*image_coords) - - return self._codomain(image_coords) - - |